Do you want to publish a course? Click here

Derivators, pointed derivators, and stable derivators

137   0   0.0 ( 0 )
 Added by Moritz Groth
 Publication date 2011
  fields
and research's language is English
 Authors Moritz Groth




Ask ChatGPT about the research

We develop some aspects of the theory of derivators, pointed derivators, and stable derivators. As a main result, we show that the values of a stable derivator can be canonically endowed with the structure of a triangulated category. Moreover, the functors belonging to the stable derivator can be turned into exact functors with respect to these triangulated structures. Along the way, we give a simplification of the axioms of a pointed derivator and a reformulation of the base change axiom in terms of Grothendieck (op)fibration. Furthermore, we have a new proof that a combinatorial model category has an underlying derivator.



rate research

Read More

55 - James Richardson 2020
The theory of derivators provides a convenient abstract setting for computing with homotopy limits and colimits. In enriched homotopy theory, the analogues of homotopy (co)limits are weighted homotopy (co)limits. In this thesis, we develop a theory of derivators and, more generally, prederivators enriched over a monoidal derivator E. In parallel to the unenriched case, these E-prederivators provide a framework for studying the constructions of enriched homotopy theory, in particular weighted homotopy (co)limits. As a precursor to E-(pre)derivators, we study E-categories, which are categories enriched over a bicategory Prof(E) associated to E. We prove a number of fundamental results about E-categories, which parallel classical results for enriched categories. In particular, we prove an E-category Yoneda lemma, and study representable maps of E-categories. In any E-category, we define notions of weighted homotopy limits and colimits. We define E-derivators to be E-categories with a number of further properties; in particular, they admit all weighted homotopy (co)limits. We show that the closed E-modules studied by Groth, Ponto and Shulman give rise to associated E-derivators, so that the theory of E-(pre)derivators captures these examples. However, by working in the more general context of E-prederivators, we can study weighted homotopy (co)limits in other settings, in particular in settings where not all weighted homotopy (co)limits exist. Using the E-category Yoneda lemma, we prove a representability theorem for E-prederivators. We show that we can use this result to deduce representability theorems for closed E-modules from representability results for their underlying categories.
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators, but only under a stronger notion of equivalence that is defined by considering a simplicial enrichment of the category of derivators. We show that derivator $K$-theory, as originally defined, is the best approximation to Waldhausen $K$-theory by a functor that is invariant under equivalences of derivators.
129 - George Raptis 2019
For every $infty$-category $mathscr{C}$, there is a homotopy $n$-category $mathrm{h}_n mathscr{C}$ and a canonical functor $gamma_n colon mathscr{C} to mathrm{h}_n mathscr{C}$. We study these higher homotopy categories, especially in connection with the existence and preservation of (co)limits, by introducing a higher categorical notion of weak colimit. Based on the idea of the homotopy $n$-category, we introduce the notion of an $n$-derivator and study the main examples arising from $infty$-categories. Following the work of Maltsiniotis and Garkusha, we define $K$-theory for $infty$-derivators and prove that the canonical comparison map from the Waldhausen $K$-theory of $mathscr{C}$ to the $K$-theory of the associated $n$-derivator $mathbb{D}_{mathscr{C}}^{(n)}$ is $(n+1)$-connected. We also prove that this comparison map identifies derivator $K$-theory of $infty$-derivators in terms of a universal property. Moreover, using the canonical structure of higher weak pushouts in the homotopy $n$-category, we define also a $K$-theory space $K(mathrm{h}_n mathscr{C}, mathrm{can})$ associated to $mathrm{h}_n mathscr{C}$. We prove that the canonical comparison map from the Waldhausen $K$-theory of $mathscr{C}$ to $K(mathrm{h}_n mathscr{C}, mathrm{can})$ is $n$-connected.
For each prime $p$, we define a $t$-structure on the category $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ of harmonic $mathbb{C}$-motivic left module spectra over $widehat{S^{0,0}}/tau$, whose MGL-homology has bounded Chow-Novikov degree, such that its heart is equivalent to the abelian category of $p$-completed $BP_*BP$-comodules that are concentrated in even degrees. We prove that $widehat{S^{0,0}}/tautext{-}mathbf{Mod}_{harm}^b$ is equivalent to $mathcal{D}^b({{BP}_*{BP}text{-}mathbf{Comod}}^{{ev}})$ as stable $infty$-categories equipped with $t$-structures. As an application, for each prime $p$, we prove that the motivic Adams spectral sequence for $widehat{S^{0,0}}/tau$, which converges to the motivic homotopy groups of $widehat{S^{0,0}}/tau$, is isomorphic to the algebraic Novikov spectral sequence, which converges to the classical Adams-Novikov $E_2$-page for the sphere spectrum $widehat{S^0}$. This isomorphism of spectral sequences allows Isaksen and the second and third authors to compute the stable homotopy groups of spheres at least to the 90-stem, with ongoing computations into even higher dimensions.
We compare the homological support and tensor triangular support for `big objects in a rigidly-compactly generated tensor triangulated category. We prove that the comparison map from the homological spectrum to the tensor triangular spectrum is a bijection and that the two notions of support coincide whenever the category is stratified, extending work of Balmer. Moreover, we clarify the relations between salient properties of support functions and exhibit counter-examples highlighting the differences between homological and tensor triangular support.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا