Do you want to publish a course? Click here

Label Mask for Multi-Label Text Classification

81   0   0.0 ( 0 )
 Added by Rui Song
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper, we propose a Label Mask multi-label text classification model (LM-MTC), which is inspired by the idea of cloze questions of language model. LM-MTC is able to capture implicit relationships among labels through the powerful ability of pre-train language models. On the basis, we assign a different token to each potential label, and randomly mask the token with a certain probability to build a label based Masked Language Model (MLM). We train the MTC and MLM together, further improving the generalization ability of the model. A large number of experiments on multiple datasets demonstrate the effectiveness of our method.



rate research

Read More

109 - Han Liu , Caixia Yuan , 2020
A major challenge of multi-label text classification (MLTC) is to stimulatingly exploit possible label differences and label correlations. In this paper, we tackle this challenge by developing Label-Wise Pre-Training (LW-PT) method to get a document representation with label-aware information. The basic idea is that, a multi-label document can be represented as a combination of multiple label-wise representations, and that, correlated labels always cooccur in the same or similar documents. LW-PT implements this idea by constructing label-wise document classification tasks and trains label-wise document encoders. Finally, the pre-trained label-wise encoder is fine-tuned with the downstream MLTC task. Extensive experimental results validate that the proposed method has significant advantages over the previous state-of-the-art models and is able to discover reasonable label relationship. The code is released to facilitate other researchers.
Multi-task learning in text classification leverages implicit correlations among related tasks to extract common features and yield performance gains. However, most previous works treat labels of each task as independent and meaningless one-hot vectors, which cause a loss of potential information and makes it difficult for these models to jointly learn three or more tasks. In this paper, we propose Multi-Task Label Embedding to convert labels in text classification into semantic vectors, thereby turning the original tasks into vector matching tasks. We implement unsupervised, supervised and semi-supervised models of Multi-Task Label Embedding, all utilizing semantic correlations among tasks and making it particularly convenient to scale and transfer as more tasks are involved. Extensive experiments on five benchmark datasets for text classification show that our models can effectively improve performances of related tasks with semantic representations of labels and additional information from each other.
97 - Irene Li , Tianxiao Li , Yixin Li 2021
Multi-label text classification (MLTC) is an attractive and challenging task in natural language processing (NLP). Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a heterogeneous graph convolutional network model to solve the MLTC problem by modeling tokens and labels as nodes in a heterogeneous graph. In this way, we are able to take into account multiple relationships including token-level relationships. Besides, the model allows a good explainability as the token-label edges are exposed. We evaluate our method on three real-world datasets and the experimental results show that it achieves significant improvements and outperforms state-of-the-art comparison methods.
Representing a true label as a one-hot vector is a common practice in training text classification models. However, the one-hot representation may not adequately reflect the relation between the instances and labels, as labels are often not completely independent and instances may relate to multiple labels in practice. The inadequate one-hot representations tend to train the model to be over-confident, which may result in arbitrary prediction and model overfitting, especially for confused datasets (datasets with very similar labels) or noisy datasets (datasets with labeling errors). While training models with label smoothing (LS) can ease this problem in some degree, it still fails to capture the realistic relation among labels. In this paper, we propose a novel Label Confusion Model (LCM) as an enhancement component to current popular text classification models. LCM can learn label confusion to capture semantic overlap among labels by calculating the similarity between instances and labels during training and generate a better label distribution to replace the original one-hot label vector, thus improving the final classification performance. Extensive experiments on five text classification benchmark datasets reveal the effectiveness of LCM for several widely used deep learning classification models. Further experiments also verify that LCM is especially helpful for confused or noisy datasets and superior to the label smoothing method.
124 - Hui Liu , Danqing Zhang , Bing Yin 2021
Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification (ZS-MTC) problem. Conventional methods aim to learn a matching model between text and labels, using a graph encoder to incorporate label hierarchies to obtain effective label representations cite{rios2018few}. More recently, pretrained models like BERT cite{devlin2018bert} have been used to convert classification tasks into a textual entailment task cite{yin-etal-2019-benchmarking}. This approach is naturally suitable for the ZS-MTC task. However, pretrained models are underexplored in the existing work because they do not generate individual vector representations for text or labels, making it unintuitive to combine them with conventional graph encoding methods. In this paper, we explore to improve pretrained models with label hierarchies on the ZS-MTC task. We propose a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage interdependence among labels in the hierarchies during training. Meanwhile, to overcome the weakness of flat predictions, we design a rollback algorithm that can remove logical errors from predictions during inference. Experimental results on three real-life datasets show that our approach achieves better performance and outperforms previous non-pretrained methods on the ZS-MTC task.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا