Do you want to publish a course? Click here

Improving Pretrained Models for Zero-shot Multi-label Text Classification through Reinforced Label Hierarchy Reasoning

125   0   0.0 ( 0 )
 Added by Hui Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification (ZS-MTC) problem. Conventional methods aim to learn a matching model between text and labels, using a graph encoder to incorporate label hierarchies to obtain effective label representations cite{rios2018few}. More recently, pretrained models like BERT cite{devlin2018bert} have been used to convert classification tasks into a textual entailment task cite{yin-etal-2019-benchmarking}. This approach is naturally suitable for the ZS-MTC task. However, pretrained models are underexplored in the existing work because they do not generate individual vector representations for text or labels, making it unintuitive to combine them with conventional graph encoding methods. In this paper, we explore to improve pretrained models with label hierarchies on the ZS-MTC task. We propose a Reinforced Label Hierarchy Reasoning (RLHR) approach to encourage interdependence among labels in the hierarchies during training. Meanwhile, to overcome the weakness of flat predictions, we design a rollback algorithm that can remove logical errors from predictions during inference. Experimental results on three real-life datasets show that our approach achieves better performance and outperforms previous non-pretrained methods on the ZS-MTC task.



rate research

Read More

One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper, we propose a Label Mask multi-label text classification model (LM-MTC), which is inspired by the idea of cloze questions of language model. LM-MTC is able to capture implicit relationships among labels through the powerful ability of pre-train language models. On the basis, we assign a different token to each potential label, and randomly mask the token with a certain probability to build a label based Masked Language Model (MLM). We train the MTC and MLM together, further improving the generalization ability of the model. A large number of experiments on multiple datasets demonstrate the effectiveness of our method.
109 - Han Liu , Caixia Yuan , 2020
A major challenge of multi-label text classification (MLTC) is to stimulatingly exploit possible label differences and label correlations. In this paper, we tackle this challenge by developing Label-Wise Pre-Training (LW-PT) method to get a document representation with label-aware information. The basic idea is that, a multi-label document can be represented as a combination of multiple label-wise representations, and that, correlated labels always cooccur in the same or similar documents. LW-PT implements this idea by constructing label-wise document classification tasks and trains label-wise document encoders. Finally, the pre-trained label-wise encoder is fine-tuned with the downstream MLTC task. Extensive experimental results validate that the proposed method has significant advantages over the previous state-of-the-art models and is able to discover reasonable label relationship. The code is released to facilitate other researchers.
152 - Bruce Nguyen , Shaoxiong Ji 2021
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or recurrent neural architectures. More recently, fine-tuned transformers-based pretrained models (PTMs) have demonstrated superior performance compared to such models in many natural language processing tasks. However, the direct use of PTMs in the biomedical domain is only limited to the target documents, ignoring the rich semantic information in the label descriptions. In this paper, we develop an improved label attention-based architecture to inject semantic label description into the fine-tuning process of PTMs. Results on two public medical datasets show that the proposed fine-tuning scheme outperforms the conventionally fine-tuned PTMs and prior state-of-the-art models. Furthermore, we show that fine-tuning with the label attention mechanism is interpretable in the interpretability study.
Multi-task learning in text classification leverages implicit correlations among related tasks to extract common features and yield performance gains. However, most previous works treat labels of each task as independent and meaningless one-hot vectors, which cause a loss of potential information and makes it difficult for these models to jointly learn three or more tasks. In this paper, we propose Multi-Task Label Embedding to convert labels in text classification into semantic vectors, thereby turning the original tasks into vector matching tasks. We implement unsupervised, supervised and semi-supervised models of Multi-Task Label Embedding, all utilizing semantic correlations among tasks and making it particularly convenient to scale and transfer as more tasks are involved. Extensive experiments on five benchmark datasets for text classification show that our models can effectively improve performances of related tasks with semantic representations of labels and additional information from each other.
103 - Hui Ye , Zhiyu Chen , Da-Han Wang 2020
Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently released generalized autoregressive pretrained model (XLNet) to learn a dense representation for the input text. We propose Adaptive Probabilistic Label Clusters (APLC) to approximate the cross entropy loss by exploiting the unbalanced label distribution to form clusters that explicitly reduce the computational time. Our experiments, carried out on five benchmark datasets, show that our approach has achieved new state-of-the-art results on four benchmark datasets. Our source code is available publicly at https://github.com/huiyegit/APLC_XLNet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا