Do you want to publish a course? Click here

KL Guided Domain Adaptation

113   0   0.0 ( 0 )
 Added by A. Tuan Nguyen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Domain adaptation is an important problem and often needed for real-world applications. In this problem, instead of i.i.d. datapoints, we assume that the source (training) data and the target (testing) data have different distributions. With that setting, the empirical risk minimization training procedure often does not perform well, since it does not account for the change in the distribution. A common approach in the domain adaptation literature is to learn a representation of the input that has the same distributions over the source and the target domain. However, these approaches often require additional networks and/or optimizing an adversarial (minimax) objective, which can be very expensive or unstable in practice. To tackle this problem, we first derive a generalization bound for the target loss based on the training loss and the reverse Kullback-Leibler (KL) divergence between the source and the target representation distributions. Based on this bound, we derive an algorithm that minimizes the KL term to obtain a better generalization to the target domain. We show that with a probabilistic representation network, the KL term can be estimated efficiently via minibatch samples without any additional network or a minimax objective. This leads to a theoretically sound alignment method which is also very efficient and stable in practice. Experimental results also suggest that our method outperforms other representation-alignment approaches.

rate research

Read More

Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability itself might be tailored to be biased and unsafely transferable by spurious correlations, emph{i.e.}, part of source-specific features are correlated with category labels. We find that standard domain-invariance learning suffers from such correlations and incorrectly transfers the source-specifics. To address this issue, we intervene in the learning of feature discriminability using unlabeled target data to guide it to get rid of the domain-specific part and be safely transferable. Concretely, we generate counterfactual features that distinguish the domain-specifics from domain-sharable part through a novel feature intervention strategy. To prevent the residence of domain-specifics, the feature discriminability is trained to be invariant to the mutations in the domain-specifics of counterfactual features. Experimenting on typical emph{one-to-one} unsupervised domain adaptation and challenging domain-agnostic adaptation tasks, the consistent performance improvements of our method over state-of-the-art approaches validate that the learned discriminative features are more safely transferable and generalize well to novel domains.
Learning guarantees often rely on assumptions of i.i.d. data, which will likely be violated in practice once predictors are deployed to perform real-world tasks. Domain adaptation approaches thus appeared as a useful framework yielding extra flexibility in that distinct train and test data distributions are supported, provided that other assumptions are satisfied such as covariate shift, which expects the conditional distributions over labels to be independent of the underlying data distribution. Several approaches were introduced in order to induce generalization across varying train and test data sources, and those often rely on the general idea of domain-invariance, in such a way that the data-generating distributions are to be disregarded by the prediction model. In this contribution, we tackle the problem of generalizing across data sources by approaching it from the opposite direction: we consider a conditional modeling approach in which predictions, in addition to being dependent on the input data, use information relative to the underlying data-generating distribution. For instance, the model has an explicit mechanism to adapt to changing environments and/or new data sources. We argue that such an approach is more generally applicable than current domain adaptation methods since it does not require extra assumptions such as covariate shift and further yields simpler training algorithms that avoid a common source of training instabilities caused by minimax formulations, often employed in domain-invariant methods.
Cross-domain sentiment analysis has received significant attention in recent years, prompted by the need to combat the domain gap between different applications that make use of sentiment analysis. In this paper, we take a novel perspective on this task by exploring the role of external commonsense knowledge. We introduce a new framework, KinGDOM, which utilizes the ConceptNet knowledge graph to enrich the semantics of a document by providing both domain-specific and domain-general background concepts. These concepts are learned by training a graph convolutional autoencoder that leverages inter-domain concepts in a domain-invariant manner. Conditioning a popular domain-adversarial baseline method with these learned concepts helps improve its performance over state-of-the-art approaches, demonstrating the efficacy of our proposed framework.
126 - Yuntao Du , Zhiwen Tan , Qian Chen 2020
Unsupervised domain adaptation aims at transferring knowledge from the labeled source domain to the unlabeled target domain. Previous adversarial domain adaptation methods mostly adopt the discriminator with binary or $K$-dimensional output to perform marginal or conditional alignment independently. Recent experiments have shown that when the discriminator is provided with domain information in both domains and label information in the source domain, it is able to preserve the complex multimodal information and high semantic information in both domains. Following this idea, we adopt a discriminator with $2K$-dimensional output to perform both domain-level and class-level alignments simultaneously in a single discriminator. However, a single discriminator can not capture all the useful information across domains and the relationships between the examples and the decision boundary are rarely explored before. Inspired by multi-view learning and latest advances in domain adaptation, besides the adversarial process between the discriminator and the feature extractor, we also design a novel mechanism to make two discriminators pit against each other, so that they can provide diverse information for each other and avoid generating target features outside the support of the source domain. To the best of our knowledge, it is the first time to explore a dual adversarial strategy in domain adaptation. Moreover, we also use the semi-supervised learning regularization to make the representations more discriminative. Comprehensive experiments on two real-world datasets verify that our method outperforms several state-of-the-art domain adaptation methods.
Deep domain adaptation models learn a neural network in an unlabeled target domain by leveraging the knowledge from a labeled source domain. This can be achieved by learning a domain-invariant feature space. Though the learned representations are separable in the source domain, they usually have a large variance and samples with different class labels tend to overlap in the target domain, which yields suboptimal adaptation performance. To fill the gap, a Fisher loss is proposed to learn discriminative representations which are within-class compact and between-class separable. Experimental results on two benchmark datasets show that the Fisher loss is a general and effective loss for deep domain adaptation. Noticeable improvements are brought when it is used together with widely adopted transfer criteria, including MMD, CORAL and domain adversarial loss. For example, an absolute improvement of 6.67% in terms of the mean accuracy is attained when the Fisher loss is used together with the domain adversarial loss on the Office-Home dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا