Do you want to publish a course? Click here

KinGDOM: Knowledge-Guided DOMain adaptation for sentiment analysis

293   0   0.0 ( 0 )
 Added by Deepanway Ghosal
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Cross-domain sentiment analysis has received significant attention in recent years, prompted by the need to combat the domain gap between different applications that make use of sentiment analysis. In this paper, we take a novel perspective on this task by exploring the role of external commonsense knowledge. We introduce a new framework, KinGDOM, which utilizes the ConceptNet knowledge graph to enrich the semantics of a document by providing both domain-specific and domain-general background concepts. These concepts are learned by training a graph convolutional autoencoder that leverages inter-domain concepts in a domain-invariant manner. Conditioning a popular domain-adversarial baseline method with these learned concepts helps improve its performance over state-of-the-art approaches, demonstrating the efficacy of our proposed framework.



rate research

Read More

Sentiment analysis is a costly yet necessary task for enterprises to study the opinions of their customers to improve their products and to determine optimal marketing strategies. Due to the existence of a wide range of domains across different products and services, cross-domain sentiment analysis methods have received significant attention. These methods mitigate the domain gap between different applications by training cross-domain generalizable classifiers which help to relax the need for data annotation for each domain. Most existing methods focus on learning domain-agnostic representations that are invariant with respect to both the source and the target domains. As a result, a classifier that is trained using the source domain annotated data would generalize well in a related target domain. We introduce a new domain adaptation method which induces large margins between different classes in an embedding space. This embedding space is trained to be domain-agnostic by matching the data distributions across the domains. Large intraclass margins in the source domain help to reduce the effect of domain shift on the classifier performance in the target domain. Theoretical and empirical analysis are provided to demonstrate that the proposed method is effective.
129 - Yong Dai , Jian Liu , Xiancong Ren 2020
Multi-source unsupervised domain adaptation (MS-UDA) for sentiment analysis (SA) aims to leverage useful information in multiple source domains to help do SA in an unlabeled target domain that has no supervised information. Existing algorithms of MS-UDA either only exploit the shared features, i.e., the domain-invariant information, or based on some weak assumption in NLP, e.g., smoothness assumption. To avoid these problems, we propose two transfer learning frameworks based on the multi-source domain adaptation methodology for SA by combining the source hypotheses to derive a good target hypothesis. The key feature of the first framework is a novel Weighting Scheme based Unsupervised Domain Adaptation framework (WS-UDA), which combine the source classifiers to acquire pseudo labels for target instances directly. While the second framework is a Two-Stage Training based Unsupervised Domain Adaptation framework (2ST-UDA), which further exploits these pseudo labels to train a target private extractor. Importantly, the weights assigned to each source classifier are based on the relations between target instances and source domains, which measured by a discriminator through the adversarial training. Furthermore, through the same discriminator, we also fulfill the separation of shared features and private features. Experimental results on two SA datasets demonstrate the promising performance of our frameworks, which outperforms unsupervised state-of-the-art competitors.
83 - Hao Tian , Can Gao , Xinyan Xiao 2020
Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at https://github.com/baidu/Senta.
109 - Zeyu Li , Yilong Qin , Zihan Liu 2021
We study Comparative Preference Classification (CPC) which aims at predicting whether a preference comparison exists between two entities in a given sentence and, if so, which entity is preferred over the other. High-quality CPC models can significantly benefit applications such as comparative question answering and review-based recommendations. Among the existing approaches, non-deep learning methods suffer from inferior performances. The state-of-the-art graph neural network-based ED-GAT (Ma et al., 2020) only considers syntactic information while ignoring the critical semantic relations and the sentiments to the compared entities. We proposed sentiment Analysis Enhanced COmparative Network (SAECON) which improves CPC ac-curacy with a sentiment analyzer that learns sentiments to individual entities via domain adaptive knowledge transfer. Experiments on the CompSent-19 (Panchenko et al., 2019) dataset present a significant improvement on the F1 scores over the best existing CPC approaches.
Sentiment analysis of user-generated reviews or comments on products and services in social networks can help enterprises to analyze the feedback from customers and take corresponding actions for improvement. To mitigate large-scale annotations on the target domain, domain adaptation (DA) provides an alternate solution by learning a transferable model from other labeled source domains. Existing multi-source domain adaptation (MDA) methods either fail to extract some discriminative features in the target domain that are related to sentiment, neglect the correlations of different sources and the distribution difference among different sub-domains even in the same source, or cannot reflect the varying optimal weighting during different training stages. In this paper, we propose a novel instance-level MDA framework, named curriculum cycle-consistent generative adversarial network (C-CycleGAN), to address the above issues. Specifically, C-CycleGAN consists of three components: (1) pre-trained text encoder which encodes textual input from different domains into a continuous representation space, (2) intermediate domain generator with curriculum instance-level adaptation which bridges the gap across source and target domains, and (3) task classifier trained on the intermediate domain for final sentiment classification. C-CycleGAN transfers source samples at instance-level to an intermediate domain that is closer to the target domain with sentiment semantics preserved and without losing discriminative features. Further, our dynamic instance-level weighting mechanisms can assign the optimal weights to different source samples in each training stage. We conduct extensive experiments on three benchmark datasets and achieve substantial gains over state-of-the-art DA approaches. Our source code is released at: https://github.com/WArushrush/Curriculum-CycleGAN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا