No Arabic abstract
We study mean field portfolio games in incomplete markets with random market parameters, where each player is concerned with not only her own wealth but also the relative performance to her competitors. We use the martingale optimality principle approach to characterize the unique Nash equilibrium in terms of a mean field FBSDE with quadratic growth, which is solvable under a weak interaction assumption. Motivated by the weak interaction assumption, we establish an asymptotic expansion result in powers of the competition parameter. When the market parameters do not depend on the Brownian paths, we get the Nash equilibrium in closed form. Moreover, when all the market parameters become time-independent, we revisit the games in [21] and our analysis shows that nonconstant equilibria do not exist in $L^infty$, and the constant equilibrium obtained in [21] is unique in $L^infty$, not only in the space of constant equilibria.
Solar Renewable Energy Certificate (SREC) markets are a market-based system that incentivizes solar energy generation. A regulatory body imposes a lower bound on the amount of energy each regulated firm must generate via solar means, providing them with a tradeable certificate for each MWh generated. Firms seek to navigate the market optimally by modulating their SREC generation and trading rates. As such, the SREC market can be viewed as a stochastic game, where agents interact through the SREC price. We study this stochastic game by solving the mean-field game (MFG) limit with sub-populations of heterogeneous agents. Market participants optimize costs accounting for trading frictions, cost of generation, non-linear non-compliance costs, and generation uncertainty. Moreover, we endogenize SREC price through market clearing. We characterize firms optimal controls as the solution of McKean-Vlasov (MV) FBSDEs and determine the equilibrium SREC price. We establish the existence and uniqueness of a solution to this MV-FBSDE, and prove that the MFG strategies form an $epsilon$-Nash equilibrium for the finite player game. Finally, we develop a numerical scheme for solving the MV-FBSDEs and conduct a simulation study.
Even when confronted with the same data, agents often disagree on a model of the real-world. Here, we address the question of how interacting heterogenous agents, who disagree on what model the real-world follows, optimize their trading actions. The market has latent factors that drive prices, and agents account for the permanent impact they have on prices. This leads to a large stochastic game, where each agents performance criteria are computed under a different probability measure. We analyse the mean-field game (MFG) limit of the stochastic game and show that the Nash equilibrium is given by the solution to a non-standard vector-valued forward-backward stochastic differential equation. Under some mild assumptions, we construct the solution in terms of expectations of the filtered states. Furthermore, we prove the MFG strategy forms an $epsilon$-Nash equilibrium for the finite player game. Lastly, we present a least-squares Monte Carlo based algorithm for computing the equilibria and show through simulations that increasing disagreement may increase price volatility and trading activity.
We consider the problem of optimal portfolio selection under forward investment performance criteria in an incomplete market. The dynamics of the prices of the traded assets depend on a pair of stochastic factors, namely, a slow factor (e.g. a macroeconomic indicator) and a fast factor (e.g. stochastic volatility). We analyze the associated forward performance SPDE and provide explicit formulae for the leading order and first order correction terms for the forward investment process and the optimal feedback portfolios. They both depend on the investors initial preferences and the dynamically changing investment opportunities. The leading order terms resemble their time-monotone counterparts, but with the appropriate stochastic time changes resulting from averaging phenomena. The first-order terms compile the reaction of the investor to both the changes in the market input and his recent performance. Our analysis is based on an expansion of the underlying ill-posed HJB equation, and it is justified by means of an appropriate remainder estimate.
We analyze a family of portfolio management problems under relative performance criteria, for fund managers having CARA or CRRA utilities and trading in a common investment horizon in log-normal markets. We construct explicit constant equilibrium strategies for both the finite population games and the corresponding mean field games, which we show are unique in the class of constant equilibria. In the CARA case, competition drives agents to invest more in the risky asset than they would otherwise, while in the CRRA case competitive agents may over- or under-invest, depending on their levels of risk tolerance.
In this paper, we propose a new class of optimization problems, which maximize the terminal wealth and accumulated consumption utility subject to a mean variance criterion controlling the final risk of the portfolio. The multiple-objective optimization problem is firstly transformed into a single-objective one by introducing the concept of overall happiness of an investor defined as the aggregation of the terminal wealth under the mean-variance criterion and the expected accumulated utility, and then solved under a game theoretic framework. We have managed to maintain analytical tractability; the closed-form solutions found for a set of special utility functions enable us to discuss some interesting optimal investment strategies that have not been revealed before in literature.