Do you want to publish a course? Click here

Continuous time mean-variance-utility portfolio problem and its equilibrium strategy

114   0   0.0 ( 0 )
 Added by Ben-Zhang Yang
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a new class of optimization problems, which maximize the terminal wealth and accumulated consumption utility subject to a mean variance criterion controlling the final risk of the portfolio. The multiple-objective optimization problem is firstly transformed into a single-objective one by introducing the concept of overall happiness of an investor defined as the aggregation of the terminal wealth under the mean-variance criterion and the expected accumulated utility, and then solved under a game theoretic framework. We have managed to maintain analytical tractability; the closed-form solutions found for a set of special utility functions enable us to discuss some interesting optimal investment strategies that have not been revealed before in literature.



rate research

Read More

This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations.
Under mean-variance-utility framework, we propose a new portfolio selection model, which allows wealth and time both have influences on risk aversion in the process of investment. We solved the model under a game theoretic framework and analytically derived the equilibrium investment (consumption) policy. The results conform with the facts that optimal investment strategy heavily depends on the investors wealth and future income-consumption balance as well as the continuous optimally consumption process is highly dependent on the consumption preference of the investor.
We derive new results related to the portfolio choice problem for power and logarithmic utilities. Assuming that the portfolio returns follow an approximate log-normal distribution, the closed-form expressions of the optimal portfolio weights are obtained for both utility functions. Moreover, we prove that both optimal portfolios belong to the set of mean-variance feasible portfolios and establish necessary and sufficient conditions such that they are mean-variance efficient. Furthermore, an application to the stock market is presented and the behavior of the optimal portfolio is discussed for different values of the relative risk aversion coefficient. It turns out that the assumption of log-normality does not seem to be a strong restriction.
Fractional stochastic volatility models have been widely used to capture the non-Markovian structure revealed from financial time series of realized volatility. On the other hand, empirical studies have identified scales in stock price volatility: both fast-time scale on the order of days and slow-scale on the order of months. So, it is natural to study the portfolio optimization problem under the effects of dependence behavior which we will model by fractional Brownian motions with Hurst index $H$, and in the fast or slow regimes characterized by small parameters $eps$ or $delta$. For the slowly varying volatility with $H in (0,1)$, it was shown that the first order correction to the problem value contains two terms of order $delta^H$, one random component and one deterministic function of state processes, while for the fast varying case with $H > half$, the same form holds at order $eps^{1-H}$. This paper is dedicated to the remaining case of a fast-varying rough environment ($H < half$) which exhibits a different behavior. We show that, in the expansion, only one deterministic term of order $sqrt{eps}$ appears in the first order correction.
The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, like the mean vector and the covariance matrix are unknown and have to be estimated by using historical data of the asset returns. The new approach employs the Bayesian posterior predictive distribution which is the distribution of the future realization of the asset returns given the observable sample. The parameters of the posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. In contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step leading to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application leads not only to the solution of the considered optimization problem, but provides the posterior predictive distribution of the optimal portfolio return used to construct a prediction interval. A Bayesian efficient frontier, a set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios known to be overoptimistic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا