No Arabic abstract
Even when confronted with the same data, agents often disagree on a model of the real-world. Here, we address the question of how interacting heterogenous agents, who disagree on what model the real-world follows, optimize their trading actions. The market has latent factors that drive prices, and agents account for the permanent impact they have on prices. This leads to a large stochastic game, where each agents performance criteria are computed under a different probability measure. We analyse the mean-field game (MFG) limit of the stochastic game and show that the Nash equilibrium is given by the solution to a non-standard vector-valued forward-backward stochastic differential equation. Under some mild assumptions, we construct the solution in terms of expectations of the filtered states. Furthermore, we prove the MFG strategy forms an $epsilon$-Nash equilibrium for the finite player game. Lastly, we present a least-squares Monte Carlo based algorithm for computing the equilibria and show through simulations that increasing disagreement may increase price volatility and trading activity.
We analyze a family of portfolio management problems under relative performance criteria, for fund managers having CARA or CRRA utilities and trading in a common investment horizon in log-normal markets. We construct explicit constant equilibrium strategies for both the finite population games and the corresponding mean field games, which we show are unique in the class of constant equilibria. In the CARA case, competition drives agents to invest more in the risky asset than they would otherwise, while in the CRRA case competitive agents may over- or under-invest, depending on their levels of risk tolerance.
This paper studies an optimal investment problem under M-CEV with power utility function. Using Laplace transform we obtain explicit expression for optimal strategy in terms of confluent hypergeometric functions. For obtained representations we derive asymptotic and approximation formulas contains only elementary functions and continued fractions. These formulas allow to make analysis of impact of models parameters and effects of parameters misspecification. In addition we propose some extensions of obtained results that can be applicable for algorithmic strategies.
We study mean field portfolio games in incomplete markets with random market parameters, where each player is concerned with not only her own wealth but also the relative performance to her competitors. We use the martingale optimality principle approach to characterize the unique Nash equilibrium in terms of a mean field FBSDE with quadratic growth, which is solvable under a weak interaction assumption. Motivated by the weak interaction assumption, we establish an asymptotic expansion result in powers of the competition parameter. When the market parameters do not depend on the Brownian paths, we get the Nash equilibrium in closed form. Moreover, when all the market parameters become time-independent, we revisit the games in [21] and our analysis shows that nonconstant equilibria do not exist in $L^infty$, and the constant equilibrium obtained in [21] is unique in $L^infty$, not only in the space of constant equilibria.
Trading frictions are stochastic. They are, moreover, in many instances fast-mean reverting. Here, we study how to optimally trade in a market with stochastic price impact and study approximations to the resulting optimal control problem using singular perturbation methods. We prove, by constructing sub- and super-solutions, that the approximations are accurate to the specified order. Finally, we perform some numerical experiments to illustrate the effect that stochastic trading frictions have on optimal trading.
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. However, in various applications, such as population dynamics or economic growth, the number of players can vary across time which may lead to different Nash equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain a variation on the mean field game problem. As a first step, we study a simple model using a PDE approach to illustrate the main differences with the classical setting. We prove existence of a solution and show that it provides an approximate Nash-equilibrium for large population games. We also present a numerical example for a linear--quadratic model. Then we study the problem in a general setting by a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which allows us to obtain a general existence result.