No Arabic abstract
It has long been speculated that quasi-two-dimensional superconductivity can reappear above its semiclassical upper critical field due to Landau quantization, yet this reentrant property has never been observed. Here, we argue that twisted bilayer graphene at a magic angle (MATBG) is an ideal system in which to search for this phenomenon because its Landau levels are doubly degenerate, and its superconductivity appears already at carrier densities small enough to allow the quantum limit to be reached at relatively modest magnetic fields. We study this problem theoretically by combining a simplified continuum model for the electronic structure of MATBG with a phenomenological attractive pairing interaction, and discuss obstacles to the observation of quantum Hall superconductivity presented by disorder, thermal fluctuations, and competing phases.
We study the chiral anomaly in disordered Weyl semimetals, where the broken translational symmetry prevents the direct application of Nielsen and Ninomiyas mechanism and disorder is strong enough that quantum effects are important. In the weak disorder regime, there exist rare regions of the random potential where the disorder strength is locally strong, which gives rise to quasilocalized resonances and their effect on the chiral anomaly is unknown. We numerically show that these resonant states do not affect the chiral anomaly only in the case of a single Weyl node. At energies away from the Weyl point, or with strong disorder where one is deep in the diffusive regime, the chiral Landau level itself is not well defined and the semiclassical treatment is not justified. In this limit, we analytically use the supersymmetry method and find that the Chern-Simons term in the effective action which is not present in nontopological systems gives rise to a nonzero average level velocity which implies chiral charge pumping. We numerically establish that the nonzero average level velocity serves as an indicator of the chiral anomaly in the diffusive limit.
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained Graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudo-magnetic field and result in the formation of Landau levels. We show that the pseudo-magnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in-situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudo-magnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
We explore Andreev states at the interface of graphene and a superconductor for a uniform pseudo-magnetic field. Near the zeroth-pseudo Landau level, we find a topological transition as a function of applied Zeeman field, at which a gapless helical mode appears. This 1D mode is protected from backscattering as long as intervalley- and spin-flip scattering are suppressed. We discuss a possible experimental platform to detect this gapless mode based on strained suspended membranes on a superconductor, in which dynamical strain causes charge pumping
We study an interacting two-component hard-core bosons on square lattice for which, in the presence of staggered magnetic flux, the ground state is a bosonic integer quantum Hall (BIQH) state. Using a coupled-wire bosonization approach, we analytically show this model exhibits a BIQH state at total charge half filling associated with a symmetry-protected topological phase under $U(1)$ charge conservation. These theoretical expectations are verified, using the infinite density matrix renormalization group method, by providing numerical evidences for: (i) a quantized Hall conductance $sigma_{xy}=pm2$, and (ii) two counter-propagating gapless edge modes. Our model is a bosonic cousin of the fermionic Haldane model and serves as an additional case of analogy between bosonic and fermionic quantum Hall states.
A term first coined by Mott back in 1968 a `pseudogap is the depletion of the electronic density of states at the Fermi level, and pseudogaps have been observed in many systems. However, since the discovery of the high temperature superconductors (HTSC) in 1986, the central role attributed to the pseudogap in these systems has meant that by many researchers now associate the term pseudogap exclusively with the HTSC phenomenon. Recently, the problem has got a lot of new attention with the rediscovery of two distinct energy scales (`two-gap scenario) and charge density waves patterns in the cuprates. Despite many excellent reviews on the pseudogap phenomenon in HTSC, published from its very discovery up to now, the mechanism of the pseudogap and its relation to superconductivity are still open questions. The present review represents a contribution dealing with the pseudogap, focusing on results from angle resolved photoemission spectroscopy (ARPES) and ends up with the conclusion that the pseudogap in cuprates is a complex phenomenon which includes at least three different `intertwined orders: spin and charge density waves and preformed pairs, which appears in different parts of the phase diagram. The density waves in cuprates are competing to superconductivity for the electronic states but, on the other hand, should drive the electronic structure to vicinity of Lifshitz transition, that could be a key similarity between the superconducting cuprates and iron based superconductors. One may also note that since the pseudogap in cuprates has multiple origins there is no need to recoin the term suggested by Mott.