No Arabic abstract
We study an interacting two-component hard-core bosons on square lattice for which, in the presence of staggered magnetic flux, the ground state is a bosonic integer quantum Hall (BIQH) state. Using a coupled-wire bosonization approach, we analytically show this model exhibits a BIQH state at total charge half filling associated with a symmetry-protected topological phase under $U(1)$ charge conservation. These theoretical expectations are verified, using the infinite density matrix renormalization group method, by providing numerical evidences for: (i) a quantized Hall conductance $sigma_{xy}=pm2$, and (ii) two counter-propagating gapless edge modes. Our model is a bosonic cousin of the fermionic Haldane model and serves as an additional case of analogy between bosonic and fermionic quantum Hall states.
Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed further light on the nature of these modes by analyzing a simple type of periodic driving where the hopping along one spatial direction is modulated sinusoidally with time while the hopping along the other spatial direction is kept constant. We obtain the phase diagram for the quasienergy spectrum at flux 1/3 as the driving frequency $omega$ and the hopping anisotropy are varied. A series of topologically distinct phases with counter-propagating edge modes appear due to the harmonic driving, similar to the case of a periodically kicked system studied earlier. We analyze the time dependence of the pair of Floquet edge states localized at the same edge, and compare their Fourier components in the frequency domain. In the limit of small modulation, one of the Floquet edge mode within the pair can be viewed as the edge mode originally living in the other energy gap shifted in quasienergy by $hbar omega$, i.e., by absorption or emission of a photon of frequency $omega$. Our result suggests that counter-propagating Floquet edge modes are generic features of periodically driven integer quantum Hall systems, and not tied to any particular driving protocol. It also suggests that the Floquet edge modes would remain robust to any static perturbations that do not destroy the chiral edge modes of static quantum Hall states.
The dominance of interactions over kinetic energy lies at the heart of strongly correlated quantum matter, from fractional quantum Hall liquids, to atoms in optical lattices and twisted bilayer graphene. Crystalline phases often compete with correlated quantum liquids, and transitions between them occur when the energy cost of forming a density wave approaches zero. A prime example occurs for electrons in high magnetic fields, where the instability of quantum Hall liquids towards a Wigner crystal is heralded by a roton-like softening of density modulations at the magnetic length. Remarkably, interacting bosons in a gauge field are also expected to form analogous liquid and crystalline states. However, combining interactions with strong synthetic magnetic fields has been a challenge for experiments on bosonic quantum gases. Here, we study the purely interaction-driven dynamics of a Landau gauge Bose-Einstein condensate in and near the lowest Landau level (LLL). We observe a spontaneous crystallization driven by condensation of magneto-rotons, excitations visible as density modulations at the magnetic length. Increasing the cloud density smoothly connects this behaviour to a quantum version of the Kelvin-Helmholtz hydrodynamic instability, driven by the sheared internal flow profile of the rapidly rotating condensate. At long times the condensate self-organizes into a persistent array of droplets, separated by vortex streets, which are stabilized by a balance of interactions and effective magnetic forces.
It has long been speculated that quasi-two-dimensional superconductivity can reappear above its semiclassical upper critical field due to Landau quantization, yet this reentrant property has never been observed. Here, we argue that twisted bilayer graphene at a magic angle (MATBG) is an ideal system in which to search for this phenomenon because its Landau levels are doubly degenerate, and its superconductivity appears already at carrier densities small enough to allow the quantum limit to be reached at relatively modest magnetic fields. We study this problem theoretically by combining a simplified continuum model for the electronic structure of MATBG with a phenomenological attractive pairing interaction, and discuss obstacles to the observation of quantum Hall superconductivity presented by disorder, thermal fluctuations, and competing phases.
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained Graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudo-magnetic field and result in the formation of Landau levels. We show that the pseudo-magnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in-situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudo-magnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evolution from an initial non-equilibrium state in a translationally invariant system. We show that electron interactions bring the system into a steady state at long times. Strikingly, this state is not a thermal one: its properties depend on the full functional form of the initial electron distribution, and not simply on the initial energy density. Further, we demonstrate that measurements of the tunneling density of states at long times can yield either an over-estimate or an under-estimate of the energy density, depending on details of the analysis, and discuss this finding in connection with an apparent energy loss observed experimentally. More specifically, we treat several separate cases: for filling factor u=1 we discuss relaxation due to finite-range or Coulomb interactions between electrons in the same channel, and for filling factor u=2 we examine relaxation due to contact interactions between electrons in different channels. In both instances we calculate analytically the long-time asymptotics of the single-particle correlation function. These results are supported by an exact solution at arbitrary time for the problem of relaxation at u=2 from an initial state in which the two channels have electron distributions that are both thermal but with unequal temperatures, for which we also examine the tunneling density of states.