Do you want to publish a course? Click here

Landau Levels in Strained Optical Lattices

252   0   0.0 ( 0 )
 Added by Binbin Tian
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained Graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudo-magnetic field and result in the formation of Landau levels. We show that the pseudo-magnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in-situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudo-magnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.



rate research

Read More

The quantum Hall effect in curved space has been the subject of many theoretical investigations in the past, but devising a physical system to observe this effect is hard. Many works have indicated that electronic excitations in strained graphene realize Dirac fermions in curved space in the presence of a background pseudo-gauge field, providing an ideal playground for this. However, the absence of a direct matching between a numerical, strained tight-binding calculation of an observable and the corresponding curved space prediction has hindered realistic predictions. In this work, we provide this matching by deriving the low-energy Hamiltonian from the tight-binding model analytically to second order in the strain and mapping it to the curved-space Dirac equation. Using a strain profile that produces a constant pseudo-magnetic field and a constant curvature, we compute the Landau level spectrum with real-space numerical tight-binding calculations and find excellent agreement with the prediction of the quantum Hall effect in curved space. We conclude discussing experimental schemes for measuring this effect.
193 - Bruno Uchoa , , Yafis Barlas 2012
We describe the formation of superconducting states in graphene in the presence of pseudo-Landau levels induced by strain, when time reversal symmetry is preserved. We show that superconductivity in strained graphene is quantum critical when the pseudo-Landau levels are completely filled, whereas at partial fillings superconductivity survives at weak coupling. In the weak coupling limit, the critical temperature scales emph{linearly} with the coupling strength and shows a sequence of quantum critical points as a function of the filling factor that can be accessed experimentally. We argue that superconductivity can be induced by electron-phonon coupling and that the transition temperature can be controlled with the amount of strain and with the filling fraction of the Landau levels.
It has long been speculated that quasi-two-dimensional superconductivity can reappear above its semiclassical upper critical field due to Landau quantization, yet this reentrant property has never been observed. Here, we argue that twisted bilayer graphene at a magic angle (MATBG) is an ideal system in which to search for this phenomenon because its Landau levels are doubly degenerate, and its superconductivity appears already at carrier densities small enough to allow the quantum limit to be reached at relatively modest magnetic fields. We study this problem theoretically by combining a simplified continuum model for the electronic structure of MATBG with a phenomenological attractive pairing interaction, and discuss obstacles to the observation of quantum Hall superconductivity presented by disorder, thermal fluctuations, and competing phases.
Topological states of matter are peculiar quantum phases showing different edge and bulk transport properties connected by the bulk-boundary correspondence. While non-interacting fermionic topological insulators are well established by now and have been classified according to a ten-fold scheme, the possible realisation of topological states for bosons has not been much explored yet. Furthermore, the role of interactions is far from being understood. Here, we show that a topological state of matter exclusively driven by interactions may occur in the p-band of a Lieb optical lattice filled with ultracold bosons. The single-particle spectrum of the system displays a remarkable parabolic band-touching point, with both bands exhibiting non-negative curvature. Although the system is neither topological at the single-particle level, nor for the interacting ground state, on-site interactions induce an anomalous Hall effect for the excitations, carrying a non-zero Chern number. Our work introduces an experimentally realistic strategy for the formation of interaction-driven topological states of bosons.
We study an interacting two-component hard-core bosons on square lattice for which, in the presence of staggered magnetic flux, the ground state is a bosonic integer quantum Hall (BIQH) state. Using a coupled-wire bosonization approach, we analytically show this model exhibits a BIQH state at total charge half filling associated with a symmetry-protected topological phase under $U(1)$ charge conservation. These theoretical expectations are verified, using the infinite density matrix renormalization group method, by providing numerical evidences for: (i) a quantized Hall conductance $sigma_{xy}=pm2$, and (ii) two counter-propagating gapless edge modes. Our model is a bosonic cousin of the fermionic Haldane model and serves as an additional case of analogy between bosonic and fermionic quantum Hall states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا