Do you want to publish a course? Click here

Large Diamagnetism and Electromagnetic Duality in Two-dimensional Dirac Electron System

147   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A Dirac electron system in solids mimics a relativistic quantum physics that is compatible with Maxwells equations, by which we anticipate unified electromagnetic responses. We find a large orbital diamagnetism only along the interplane direction and the nearly temperature-independent conductance of the order of e2/h for the new 2D Dirac organic conductor, a-(BETS)2I3. Distinct from conventional electrons in solids whose nonrelativistic effects bifurcate electric and magnetic responses, the observed orbital diamagnetism scales the electrical conductivity for a wide temperature range. This demonstrates that an electromagnetic duality that is valid only within the relativistic framework is revived in solids.



rate research

Read More

We report direct measurements of the valley susceptibility, the change of valley population in response to applied symmetry-breaking strain, in an AlAs two-dimensional electron system. As the two-dimensional density is reduced, the valley susceptibility dramatically increases relative to its band value, reflecting the systems strong electron-electron interaction. The increase has a remarkable resemblance to the enhancement of the spin susceptibility and establishes the analogy between the spin and valley degrees of freedom.
We measure the effective mass (m*) of interacting two-dimensional electrons confined to a 4.5 nm-wide AlAs quantum well. The electrons in this well occupy a single out-of-plane conduction band valley with an isotropic in-plane Fermi contour. When the electrons are partially spin polarized, m* is larger than its band value and increases as the density is reduced. However, as the system is driven to full spin-polarization via the application of a strong parallel magnetic field, m* is suppressed down to values near or even below the band mass. Our results are consistent with the previously reported measurements on wide AlAs quantum wells where the electrons occupy an in-plane valley with an anisotropic Fermi contour and effective mass, and suggest that the effective mass suppression upon complete spin polarization is a genuine property of interacting two-dimensional electrons.
A magnetotransport study in magnetically doped (Cd,Mn)Te 2D quantum wells reveals an apparent metal-insulator transition as well as an anomalous intermediate phase just on its metallic side. This phase is characterized by colossal magnetoresistance-like phenomena, which are assigned to the phase separation of the electron fluid and the associated emergence of ferromagnetic bubbles.
Fermi gases in two dimensions display a surprising collective behavior originating from the head-on carrier collisions. The head-on processes dominate angular relaxation at not-too-high temperatures $Tll T_F$ owing to the interplay of Pauli blocking and momentum conservation. As a result, a large family of excitations emerges, associated with the odd-parity harmonics of momentum distribution and having exceptionally long lifetimes. This leads to tomographic dynamics: fast 1D spatial diffusion along the unchanging velocity direction accompanied by a slow angular dynamics that gradually randomizes velocity orientation. The tomographic regime features an unusual hierarchy of time scales and scale-dependent transport coefficients with nontrivial fractional scaling dimensions, leading to fractional-power current flow profiles and unusual conductance scaling vs. sample width.
155 - E.V. Deviatov , A. Wurtz , A.Lorke 2004
We use a quasi-Corbino sample geometry with independent contacts to different edge states in the quantum Hall effect regime to investigate the edge energy spectrum of a bilayer electron system at total filling factor $ u=2$. By analyzing non-linear $I-V$ curves in normal and tilted magnetic fields we conclude that the edge energy spectrum is in a close connection with the bulk one. At the bulk phase transition spin-singlet - canted antiferromagnetic phase $I-V$ curve becomes to be linear, indicating the disappearance or strong narrowing of the $ u=1$ incompressible strip at the edge of the sample.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا