No Arabic abstract
Fermi gases in two dimensions display a surprising collective behavior originating from the head-on carrier collisions. The head-on processes dominate angular relaxation at not-too-high temperatures $Tll T_F$ owing to the interplay of Pauli blocking and momentum conservation. As a result, a large family of excitations emerges, associated with the odd-parity harmonics of momentum distribution and having exceptionally long lifetimes. This leads to tomographic dynamics: fast 1D spatial diffusion along the unchanging velocity direction accompanied by a slow angular dynamics that gradually randomizes velocity orientation. The tomographic regime features an unusual hierarchy of time scales and scale-dependent transport coefficients with nontrivial fractional scaling dimensions, leading to fractional-power current flow profiles and unusual conductance scaling vs. sample width.
Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the single particle density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.
Rectification of microwave radiation (20-40 GHz) by a line boundary between two two-dimensional metals on a silicon surface was observed and investigated at different temperatures, in-plane magnetic fields and microwave powers. The rectified voltage $V_{dc}$ is generated whenever the electron densities $n_{1,2}$ of the two metals are different, changing polarity at $n_1 approx n_2$. Very strong nonlinear response is found when one of the two 2D metals is close to the electron density corresponding to the reported magnetic instability in this system.
We report an universal behaviour of hopping transport in strongly interacting mesoscopic two-dimensional electron systems (2DES). In a certain window of background disorder, the resistivity at low perpendicular magnetic fields follows the expected relation $rho(B_perp) = rho_{rm{B}}exp(alpha B_perp^2)$. The prefactor $rho_{rm{B}}$ decreases exponentially with increasing electron density but saturates to a finite value at higher densities. Strikingly, this value is found to be universal when expressed in terms of absolute resistance and and shows quantisation at $R_{rm{B}}approx h/e^2$ and $R_{rm{B}}approx 1/2$ $ h/e^2$. We suggest a strongly correlated electronic phase as a possible explanation.
We report electrical conductivity $sigma$ measurements on a range of two-dimensional electron gases (2DEGs) of varying linear extent. Intriguingly, at low temperatures ($T$) and low carrier density ($n_{mathrm{s}}$) we find the behavior to be consistent with $sigma sim L^{alpha}$, where $L$ is the length of the 2DEG along the direction of transport. Importantly, such scale-dependent behavior is precisely in accordance with the scaling hypothesis of localization~[Abrahams~textit{et al.}, Phys. Rev. Lett. textbf{42}, 673 (1979)] which dictates that in systems where the electronic wave function $xi$ is localized, $sigma$ is not a material-specific parameter, but depends on the system dimensions. From our data we are able to construct the $beta$-function $equiv (h/e^2) d ln sigma / d ln L$ and show this to be strongly consistent with theoretically predicted limiting values. These results suggest, remarkably, that the electrons in the studied 2DEGs preserve phase coherence over lengths $sim~10~mu$m. This suggests the utility of the 2DEGs studied towards applications in quantum information as well as towards fundamental investigations into many-body localized phases.
A Dirac electron system in solids mimics a relativistic quantum physics that is compatible with Maxwells equations, by which we anticipate unified electromagnetic responses. We find a large orbital diamagnetism only along the interplane direction and the nearly temperature-independent conductance of the order of e2/h for the new 2D Dirac organic conductor, a-(BETS)2I3. Distinct from conventional electrons in solids whose nonrelativistic effects bifurcate electric and magnetic responses, the observed orbital diamagnetism scales the electrical conductivity for a wide temperature range. This demonstrates that an electromagnetic duality that is valid only within the relativistic framework is revived in solids.