Do you want to publish a course? Click here

Valley susceptibility of an interacting two-dimensional electron system

129   0   0.0 ( 0 )
 Added by Oki Gunawan
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report direct measurements of the valley susceptibility, the change of valley population in response to applied symmetry-breaking strain, in an AlAs two-dimensional electron system. As the two-dimensional density is reduced, the valley susceptibility dramatically increases relative to its band value, reflecting the systems strong electron-electron interaction. The increase has a remarkable resemblance to the enhancement of the spin susceptibility and establishes the analogy between the spin and valley degrees of freedom.



rate research

Read More

By using different widths for two AlAs quantum wells comprising a bilayer system, we force the X-point conduction-band electrons in the two layers to occupy valleys with different Fermi contours, electron effective masses, and g-factors. Since the occupied valleys are at different X-points of the Brillouin zone, the interlayer tunneling is negligibly small despite the close electron layer spacing. We demonstrate the realization of this system via magneto-transport measurements and the observation of a phase-coherent, bilayer $ u$=1 quantum Hall state flanked by a reentrant insulating phase.
We measure the effective mass (m*) of interacting two-dimensional electrons confined to a 4.5 nm-wide AlAs quantum well. The electrons in this well occupy a single out-of-plane conduction band valley with an isotropic in-plane Fermi contour. When the electrons are partially spin polarized, m* is larger than its band value and increases as the density is reduced. However, as the system is driven to full spin-polarization via the application of a strong parallel magnetic field, m* is suppressed down to values near or even below the band mass. Our results are consistent with the previously reported measurements on wide AlAs quantum wells where the electrons occupy an in-plane valley with an anisotropic Fermi contour and effective mass, and suggest that the effective mass suppression upon complete spin polarization is a genuine property of interacting two-dimensional electrons.
A magnetotransport study in magnetically doped (Cd,Mn)Te 2D quantum wells reveals an apparent metal-insulator transition as well as an anomalous intermediate phase just on its metallic side. This phase is characterized by colossal magnetoresistance-like phenomena, which are assigned to the phase separation of the electron fluid and the associated emergence of ferromagnetic bubbles.
A Dirac electron system in solids mimics a relativistic quantum physics that is compatible with Maxwells equations, by which we anticipate unified electromagnetic responses. We find a large orbital diamagnetism only along the interplane direction and the nearly temperature-independent conductance of the order of e2/h for the new 2D Dirac organic conductor, a-(BETS)2I3. Distinct from conventional electrons in solids whose nonrelativistic effects bifurcate electric and magnetic responses, the observed orbital diamagnetism scales the electrical conductivity for a wide temperature range. This demonstrates that an electromagnetic duality that is valid only within the relativistic framework is revived in solids.
We report measurements of the spin susceptibility in dilute two-dimensional electrons confined to a 45$AA$ wide AlAs quantum well. The electrons in this well occupy an out-of-plane conduction-band valley, rendering a system similar to two-dimensional electrons in Si-MOSFETs but with only one valley occupied. We observe an enhancement of the spin susceptibility over the band value that increases as the density is decreased, following closely the prediction of quantum Monte Carlo calculations and continuing at finite values through the metal-insulator transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا