Do you want to publish a course? Click here

Soliton resolution for the Harry Dym equation with weighted Sobolev initial data

116   0   0.0 ( 0 )
 Added by Zhenyun Qin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The soliton resolution for the Harry Dym equation is established for initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})$. Combining the nonlinear steepest descent method and $bar{partial}$-derivatives condition, we obtain that when $frac{y}{t}<-epsilon(epsilon>0)$ the long time asymptotic expansion of the solution $q(x,t)$ in any fixed cone begin{equation} Cleft(y_{1}, y_{2}, v_{1}, v_{2}right)=left{(y, t) in R^{2} mid y=y_{0}+v t, y_{0} inleft[y_{1}, y_{2}right], v inleft[v_{1}, v_{2}right]right} end{equation} up to an residual error of order $mathcal{O}(t^{-1})$. The expansion shows the long time asymptotic behavior can be described as an $N(I)$-soliton on discrete spectrum whose parameters are modulated by a sum of localized soliton-soliton interactions as one moves through the cone and the second term coming from soliton-radiation interactionson on continuous spectrum.



rate research

Read More

In this work, the $overline{partial}$ steepest descent method is employed to investigate the soliton resolution for the Hirota equation with the initial value belong to weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb{R})}$. The long-time asymptotic behavior of the solution $q(x,t)$ is derived in any fixed space-time cone $C(x_{1},x_{2},v_{1},v_{2})=left{(x,t)in mathbb{R}timesmathbb{R}: x=x_{0}+vt ~text{with}~ x_{0}in[x_{1},x_{2}]right}$. We show that solution resolution conjecture of the Hirota equation is characterized by the leading order term $mathcal {O}(t^{-1/2})$ in the continuous spectrum, $mathcal {N}(mathcal {I})$ soliton solutions in the discrete spectrum and error order $mathcal {O}(t^{-3/4})$ from the $overline{partial}$ equation.
We employ the $bar{partial}$-steepest descent method in order to investigate the Cauchy problem of the complex short pulse (CSP) equation with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb{R})}$. The long time asymptotic behavior of the solution $u(x,t)$ is derived in a fixed space-time cone $S(x_{1},x_{2},v_{1},v_{2})={(x,t)inmathbb{R}^{2}: y=y_{0}+vt, ~y_{0}in[y_{1},y_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the solution resolution conjecture of the CSP equation which includes the soliton term confirmed by $N(I)$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-1})$.
In this work, we employ the $bar{partial}$ steepest descent method in order to study the Cauchy problem of the cgNLS equations with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb{R})}$. The large time asymptotic behavior of the solution $u(x,t)$ and $v(x,t)$ are derived in a fixed space-time cone $S(x_{1},x_{2},v_{1},v_{2})={(x,t)inmathbb{R}^{2}: x=x_{0}+vt, ~x_{0}in[x_{1},x_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the solution resolution conjecture of the cgNLS equations which contains the soliton term confirmed by $|mathcal{Z}(mathcal{I})|$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-frac{3}{4}})$.
In this work, we employ the $bar{partial}$-steepest descent method to investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with initial conditions in weighted Sobolev space $mathcal{H}(mathbb{R})$. The long time asymptotic behavior of the solution $q(x,t)$ is derived in a fixed space-time cone $S(y_{1},y_{2},v_{1},v_{2})={(y,t)inmathbb{R}^{2}: y=y_{0}+vt, ~y_{0}in[y_{1},y_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the soliton resolution conjecture of the WKI equation which includes the soliton term confirmed by $N(mathcal{I})$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-frac{3}{4}})$.
111 - P. Deift , X. Zhou 2002
The authors compute the long-time asymptotics for solutions of the NLS equation just under the assumption that the initial data lies in a weighted Sobolev space. In earlier work (see e.g. [DZ1],[DIZ]) high orders of decay and smoothness are required for the initial data. The method here is a further development of the steepest descent method of [DZ1], and replaces certain absolute type estimates in [DZ1] with cancellation from oscillations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا