No Arabic abstract
The electroencephalographic (EEG) signals provide highly informative data on brain activities and functions. However, their heterogeneity and high dimensionality may represent an obstacle for their interpretation. The introduction of a priori knowledge seems the best option to mitigate high dimensionality problems, but could lose some information and patterns present in the data, while data heterogeneity remains an open issue that often makes generalization difficult. In this study, we propose a genetic algorithm (GA) for feature selection that can be used with a supervised or unsupervised approach. Our proposal considers three different fitness functions without relying on expert knowledge. Starting from two publicly available datasets on cognitive workload and motor movement/imagery, the EEG signals are processed, normalized and their features computed in the time, frequency and time-frequency domains. The feature vector selection is performed by applying our GA proposal and compared with two benchmarking techniques. The results show that different combinations of our proposal achieve better results in respect to the benchmark in terms of overall performance and feature reduction. Moreover, the proposed GA, based on a novel fitness function here presented, outperforms the benchmark when the two different datasets considered are merged together, showing the effectiveness of our proposal on heterogeneous data.
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years because of the rapid proliferation of wireless devices. MANETs are highly vulnerable to attacks due to the open medium, dynamically changing network topology and lack of centralized monitoring point. It is important to search new architecture and mechanisms to protect the wireless networks and mobile computing application. IDS analyze the network activities by means of audit data and use patterns of well-known attacks or normal profile to detect potential attacks. There are two methods to analyze: misuse detection and anomaly detection. Misuse detection is not effective against unknown attacks and therefore, anomaly detection method is used. In this approach, the audit data is collected from each mobile node after simulating the attack and compared with the normal behavior of the system. If there is any deviation from normal behavior then the event is considered as an attack. Some of the features of collected audit data may be redundant or contribute little to the detection process. So it is essential to select the important features to increase the detection rate. This paper focuses on implementing two feature selection methods namely, markov blanket discovery and genetic algorithm. In genetic algorithm, bayesian network is constructed over the collected features and fitness function is calculated. Based on the fitness value the features are selected. Markov blanket discovery also uses bayesian network and the features are selected depending on the minimum description length. During the evaluation phase, the performances of both approaches are compared based on detection rate and false alarm rate.
Facilitated by the recent advances of Machine Learning (ML), the automated design of optimization heuristics is currently shaking up evolutionary computation (EC). Where the design of hand-picked guidelines for choosing a most suitable heuristic has long dominated research activities in the field, automatically trained heuristics are now seen to outperform human-derived choices even for well-researched optimization tasks. ML-based EC is therefore not any more a futuristic vision, but has become an integral part of our community. A key criticism that ML-based heuristics are often faced with is their potential lack of explainability, which may hinder future developments. This applies in particular to supervised learning techniques which extrapolate algorithms performance based on exploratory landscape analysis (ELA). In such applications, it is not uncommon to use dozens of problem features to build the models underlying the specific algorithm selection or configuration task. Our goal in this work is to analyze whether this many features are indeed needed. Using the classification of the BBOB test functions as testbed, we show that a surprisingly small number of features -- often less than four -- can suffice to achieve a 98% accuracy. Interestingly, the number of features required to meet this threshold is found to decrease with the problem dimension. We show that the classification accuracy transfers to settings in which several instances are involved in training and testing. In the leave-one-instance-out setting, however, classification accuracy drops significantly, and the transformation-invariance of the features becomes a decisive success factor.
The feature-selection problem is formulated from an information-theoretic perspective. We show that the problem can be efficiently solved by an extension of the recently proposed info-clustering paradigm. This reveals the fundamental duality between feature selection and data clustering,which is a consequence of the more general duality between the principal partition and the principal lattice of partitions in combinatorial optimization.
Missing data are a concern in many real world data sets and imputation methods are often needed to estimate the values of missing data, but data sets with excessive missingness and high dimensionality challenge most approaches to imputation. Here we show that appropriate feature selection can be an effective preprocessing step for imputation, allowing for more accurate imputation and subsequent model predictions. The key feature of this preprocessing is that it incorporates uncertainty: by accounting for uncertainty due to missingness when selecting features we can reduce the degree of missingness while also limiting the number of uninformative features being used to make predictive models. We introduce a method to perform uncertainty-aware feature selection (UAFS), provide a theoretical motivation, and test UAFS on both real and synthetic problems, demonstrating that across a variety of data sets and levels of missingness we can improve the accuracy of imputations. Improved imputation due to UAFS also results in improved prediction accuracy when performing supervised learning using these imputed data sets. Our UAFS method is general and can be fruitfully coupled with a variety of imputation methods.
We introduce a new method of performing high dimensional discriminant analysis, which we call multiDA. We achieve this by constructing a hybrid model that seamlessly integrates a multiclass diagonal discriminant analysis model and feature selection components. Our feature selection component naturally simplifies to weights which are simple functions of likelihood ratio statistics allowing natural comparisons with traditional hypothesis testing methods. We provide heuristic arguments suggesting desirable asymptotic properties of our algorithm with regards to feature selection. We compare our method with several other approaches, showing marked improvements in regard to prediction accuracy, interpretability of chosen features, and algorithm run time. We demonstrate such strengths of our model by showing strong classification performance on publicly available high dimensional datasets, as well as through multiple simulation studies. We make an R package available implementing our approach.