No Arabic abstract
Ad creatives are one of the prominent mediums for online e-commerce advertisements. Ad creatives with enjoyable visual appearance may increase the click-through rate (CTR) of products. Ad creatives are typically handcrafted by advertisers and then delivered to the advertising platforms for advertisement. In recent years, advertising platforms are capable of instantly compositing ad creatives with arbitrarily designated elements of each ingredient, so advertisers are only required to provide basic materials. While facilitating the advertisers, a great number of potential ad creatives can be composited, making it difficult to accurately estimate CTR for them given limited real-time feedback. To this end, we propose an Adaptive and Efficient ad creative Selection (AES) framework based on a tree structure. The tree structure on compositing ingredients enables dynamic programming for efficient ad creative selection on the basis of CTR. Due to limited feedback, the CTR estimator is usually of high variance. Exploration techniques based on Thompson sampling are widely used for reducing variances of the CTR estimator, alleviating feedback sparsity. Based on the tree structure, Thompson sampling is adapted with dynamic programming, leading to efficient exploration for potential ad creatives with the largest CTR. We finally evaluate the proposed algorithm on the synthetic dataset and the real-world dataset. The results show that our approach can outperform competing baselines in terms of convergence rate and overall CTR.
Advertising expenditures have become the major source of revenue for e-commerce platforms. Providing good advertising experiences for advertisers by reducing their costs of trial and error in discovering the optimal advertising strategies is crucial for the long-term prosperity of online advertising. To achieve this goal, the advertising platform needs to identify the advertisers optimization objectives, and then recommend the corresponding strategies to fulfill the objectives. In this work, we first deploy a prototype of strategy recommender system on Taobao display advertising platform, which indeed increases the advertisers performance and the platforms revenue, indicating the effectiveness of strategy recommendation for online advertising. We further augment this prototype system by explicitly learning the advertisers preferences over various advertising performance indicators and then optimization objectives through their adoptions of different recommending advertising strategies. We use contextual bandit algorithms to efficiently learn the advertisers preferences and maximize the recommendation adoption, simultaneously. Simulation experiments based on Taobao online bidding data show that the designed algorithms can effectively optimize the strategy adoption rate of advertisers.
Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are recently less studied in the industry due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn CTR models based on Gaussian processes, which can provide predictive uncertainty estimations while maintaining the flexibility of deep neural networks. DUAL can be easily implemented on existing models and deployed in real-time systems with minimal extra computational overhead. By linking the predictive uncertainty estimation ability of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an 8.2% social welfare improvement and an 8.0% revenue lift.
In this paper, the method UCB-RS, which resorts to recommendation system (RS) for enhancing the upper-confidence bound algorithm UCB, is presented. The proposed method is used for dealing with non-stationary and large-state spaces multi-armed bandit problems. The proposed method has been targeted to the problem of the product recommendation in the online advertising. Through extensive testing with RecoGym, an OpenAI Gym-based reinforcement learning environment for the product recommendation in online advertising, the proposed method outperforms the widespread reinforcement learning schemes such as $epsilon$-Greedy, Upper Confidence (UCB1) and Exponential Weights for Exploration and Exploitation (EXP3).
Matching module plays a critical role in display advertising systems. Without query from user, it is challenging for system to match user traffic and ads suitably. System packs up a group of users with common properties such as the same gender or similar shopping interests into a crowd. Here term crowd can be viewed as a tag over users. Then advertisers bid for different crowds and deliver their ads to those targeted users. Matching module in most industrial display advertising systems follows a two-stage paradigm. When receiving a user request, matching system (i) finds the crowds that the user belongs to; (ii) retrieves all ads that have targeted those crowds. However, in applications such as display advertising at Alibaba, with very large volumes of crowds and ads, both stages of matching have to truncate the long-tailed parts for online serving, under limited latency. Thats to say, not all ads have the chance to participate in online matching. This results in sub-optimal result for both advertising performance and platform revenue. In this paper, we study the truncation problem and propose a Truncation Free Matching System (TFMS). The basic idea is to decouple the matching computation from the online pipeline. Instead of executing the two-stage matching when user visits, TFMS utilizes a near-line truncation-free matching to pre-calculate and store those top valuable ads for each user. Then the online pipeline just needs to fetch the pre-stored ads as matching results. In this way, we can jump out of online systems latency and computation cost limitations, and leverage flexible computation resource to finish the user-ad matching. TFMS has been deployed in our productive system since 2019, bringing (i) more than 50% improvement of impressions for advertisers who encountered truncation before, (ii) 9.4% Revenue Per Mile gain, which is significant enough for the business.
Search, recommendation, and online advertising are the three most important information-providing mechanisms on the web. These information seeking techniques, satisfying users information needs by suggesting users personalized objects (information or services) at the appropriate time and place, play a crucial role in mitigating the information overload problem. With recent great advances in deep reinforcement learning (DRL), there have been increasing interests in developing DRL based information seeking techniques. These DRL based techniques have two key advantages -- (1) they are able to continuously update information seeking strategies according to users real-time feedback, and (2) they can maximize the expected cumulative long-term reward from users where reward has different definitions according to information seeking applications such as click-through rate, revenue, user satisfaction and engagement. In this paper, we give an overview of deep reinforcement learning for search, recommendation, and online advertising from methodologies to applications, review representative algorithms, and discuss some appealing research directions.