No Arabic abstract
In this paper, we propose our enhanced approach to create a dedicated corpus for Algerian Arabic newspapers comments. The developed approach has to enhance an existing approach by the enrichment of the available corpus and the inclusion of the annotation step by following the Model Annotate Train Test Evaluate Revise (MATTER) approach. A corpus is created by collecting comments from web sites of three well know Algerian newspapers. Three classifiers, support vector machines, na{i}ve Bayes, and k-nearest neighbors, were used for classification of comments into positive and negative classes. To identify the influence of the stemming in the obtained results, the classification was tested with and without stemming. Obtained results show that stemming does not enhance considerably the classification due to the nature of Algerian comments tied to Algerian Arabic Dialect. The promising results constitute a motivation for us to improve our approach especially in dealing with non Arabic sentences, especially Dialectal and French ones.
The advancement of biomedical named entity recognition (BNER) and biomedical relation extraction (BRE) researches promotes the development of text mining in biological domains. As a cornerstone of BRE, robust BNER system is required to identify the mentioned NEs in plain texts for further relation extraction stage. However, the current BNER corpora, which play important roles in these tasks, paid less attention to achieve the criteria for BRE task. In this study, we present Revised JNLPBA corpus, the revision of JNLPBA corpus, to broaden the applicability of a NER corpus from BNER to BRE task. We preserve the original entity types including protein, DNA, RNA, cell line and cell type while all the abstracts in JNLPBA corpus are manually curated by domain experts again basis on the new annotation guideline focusing on the specific NEs instead of general terms. Simultaneously, several imperfection issues in JNLPBA are pointed out and made up in the new corpus. To compare the adaptability of different NER systems in Revised JNLPBA and JNLPBA corpora, the F1-measure was measured in three open sources NER systems including BANNER, Gimli and NERSuite. In the same circumstance, all the systems perform average 10% better in Revised JNLPBA than in JNLPBA. Moreover, the cross-validation test is carried out which we train the NER systems on JNLPBA/Revised JNLPBA corpora and access the performance in both protein-protein interaction extraction (PPIE) and biomedical event extraction (BEE) corpora to confirm that the newly refined Revised JNLPBA is a competent NER corpus in biomedical relation application. The revised JNLPBA corpus is freely available at iasl-btm.iis.sinica.edu.tw/BNER/Content/Revised_JNLPBA.zip.
Nowadays, it is no more needed to do an enormous effort to distribute a lot of forms to thousands of people and collect them, then convert this from into electronic format to track people opinion about some subjects. A lot of web sites can today reach a large spectrum with less effort. The majority of web sites suggest to their visitors to leave backups about their feeling of the site or events. So, this makes for us a lot of data which need powerful mean to exploit. Opinion mining in the web becomes more and more an attracting task, due the increasing need for individuals and societies to track the mood of people against several subjects of daily life (sports, politics, television,...). A lot of works in opinion mining was developed in western languages especially English, such works in Arabic language still very scarce. In this paper, we propose our approach, for opinion mining in Arabic Algerian news paper. CCS CONCEPTS $bullet$Information systems~Sentiment analysis $bullet$ Computing methodologies~Natural language processing
Recent research demonstrates the effectiveness of using fine-tuned language models~(LM) for dense retrieval. However, dense retrievers are hard to train, typically requiring heavily engineered fine-tuning pipelines to realize their full potential. In this paper, we identify and address two underlying problems of dense retrievers: i)~fragility to training data noise and ii)~requiring large batches to robustly learn the embedding space. We use the recently proposed Condenser pre-training architecture, which learns to condense information into the dense vector through LM pre-training. On top of it, we propose coCondenser, which adds an unsupervised corpus-level contrastive loss to warm up the passage embedding space. Retrieval experiments on MS-MARCO, Natural Question, and Trivia QA datasets show that coCondenser removes the need for heavy data engineering such as augmentation, synthesis, or filtering, as well as the need for large batch training. It shows comparable performance to RocketQA, a state-of-the-art, heavily engineered system, using simple small batch fine-tuning.
The text generated on social media platforms is essentially a mixed lingual text. The mixing of language in any form produces considerable amount of difficulty in language processing systems. Moreover, the advancements in language processing research depends upon the availability of standard corpora. The development of mixed lingual Indian Named Entity Recognition (NER) systems are facing obstacles due to unavailability of the standard evaluation corpora. Such corpora may be of mixed lingual nature in which text is written using multiple languages predominantly using a single script only. The motivation of our work is to emphasize the automatic generation such kind of corpora in order to encourage mixed lingual Indian NER. The paper presents the preparation of a Cross Script Hindi-English Corpora from Wikipedia category pages. The corpora is successfully annotated using standard CoNLL-2003 categories of PER, LOC, ORG, and MISC. Its evaluation is carried out on a variety of machine learning algorithms and favorable results are achieved.
What are the latent questions on some textual data? In this work, we investigate using question generation models for exploring a collection of documents. Our method, dubbed corpus2question, consists of applying a pre-trained question generation model over a corpus and aggregating the resulting questions by frequency and time. This technique is an alternative to methods such as topic modelling and word cloud for summarizing large amounts of textual data. Results show that applying corpus2question on a corpus of scientific articles related to COVID-19 yields relevant questions about the topic. The most frequent questions are what is covid 19 and what is the treatment for covid. Among the 1000 most frequent questions are what is the threshold for herd immunity and what is the role of ace2 in viral entry. We show that the proposed method generated similar questions for 13 of the 27 expert-made questions from the CovidQA question answering dataset. The code to reproduce our experiments and the generated questions are available at: https://github.com/unicamp-dl/corpus2question