No Arabic abstract
As a promising lensless imaging method for distance objects, intensity interferometry imaging (III) had been suffering from the unreliable phase retrieval process, hindering the development of III for decades. Recently, the introduction of the ptychographic detection in III overcame this challenge, and a method called ptychographic III (PIII) was proposed. We here experimentally demonstrate that PIII can image a dynamic distance object. A reasonable image for the moving object can be retrieved with only two speckle patterns for each probe, and only 10 to 20 iterations are needed. Meanwhile, PIII exhibits robust to the inaccurate information of the probe. Furthermore, PIII successfully recovers the image through a fog obfuscating the imaging light path, under which a conventional camera relying on lenses fails to provide a recognizable image.
Intensity interferometry (II) exploits the second-order correlation to acquire the spatial frequency information of an object, which has been used to observe distant stars since 1950s. However, due to unreliability of employed imaging reconstruction algorithms, II can only image simple and sparse objects such as double stars. We here develop a method that overcomes this unreliability problem and enables imaging complex objects by combing II and a ptychography iterative algorithm. Different from previous ptychography iterative-type algorithms that work only for diffractive objects using coherence light sources, our method obtains the objects spatial spectrum from the second-order correlation of intensity fluctuation by using an incoherent source, which therefore largely simplifies the imaging process. Furthermore, by introducing loose supports in the ptychography algorithm, a high-quality image can be recovered without knowing the precise size and position of the scanning illumination, which is a strong requirement for traditional ptychography iterative algorithm.
We propose a new approach, based on the Hanbury Brown and Twiss intensity interferometry, to transform a Cherenkov telescope to its equivalent optical telescope. We show that, based on the use of photonics components borrowed from quantum-optical applications, we can recover spatial details of the observed source down to the diffraction limit of the Cherenkov telescope, set by its diameter at the mean wavelength of observation. For this, we propose to apply aperture synthesis techniques from pairwise and triple correlation of sub-pupil intensities, in order to reconstruct the image of a celestial source from its Fourier moduli and phase information, despite atmospheric turbulence. We examine the sensitivity of the method, i.e. limiting magnitude, and its implementation on existing or future high energy arrays of Cherenkov telescopes. We show that despite its poor optical quality compared to extremely large optical telescopes under construction, a Cherenkov telescope can provide diffraction limited imaging of celestial sources, in particular at the visible, down to violet wavelengths.
Diffractive zone plate optics uses a thin micro-structure pattern to alter the propagation direction of the incoming light wave. It has found important applications in extreme-wavelength imaging where conventional refractive lenses do not exist. The resolution limit of zone plate optics is determined by the smallest width of the outermost zone. In order to improve the achievable resolution, significant efforts have been devoted to the fabrication of very small zone width with ultrahigh placement accuracy. Here, we report the use of a diffractometer setup for bypassing the resolution limit of zone plate optics. In our prototype, we mounted the sample on two rotation stages and used a low-resolution binary zone plate to relay the sample plane to the detector. We then performed both in-plane and out-of-plane sample rotations and captured the corresponding raw images. The captured images were processed using a Fourier ptychographic procedure for resolution improvement. The final achievable resolution of the reported setup is not determined by the smallest width structures of the employed binary zone plate; instead, it is determined by the maximum angle of the out-of-plane rotation. In our experiment, we demonstrated 8-fold resolution improvement using both a resolution target and a titanium dioxide sample. The reported approach may be able to bypass the fabrication challenge of diffractive elements and open up new avenues for microscopy with extreme wavelengths.
Imaging through scattering media is a useful and yet demanding task since it involves solving for an inverse mapping from speckle images to object images. It becomes even more challenging when the scattering medium undergoes dynamic changes. Various approaches have been proposed in recent years. However, to date, none is able to preserve high image quality without either assuming a finite number of sources for dynamic changes, assuming a thin scattering medium, or requiring the access to both ends of the medium. In this paper, we propose an adaptive inverse mapping (AIP) method which is flexible regarding any dynamic change and only requires output speckle images after initialization. We show that the inverse mapping can be corrected through unsupervised learning if the output speckle images are followed closely. We test the AIP method on two numerical simulations, namely, a dynamic scattering system formulated as an evolving transmission matrix and a telescope with a changing random phase mask at a defocus plane. Then we experimentally apply the AIP method on a dynamic fiber-optic imaging system. Increased robustness in imaging is observed in all three cases. With the excellent performance, we see the great potential of the AIP method in imaging through dynamic scattering media.
Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To enlarge FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.