No Arabic abstract
We propose a new approach, based on the Hanbury Brown and Twiss intensity interferometry, to transform a Cherenkov telescope to its equivalent optical telescope. We show that, based on the use of photonics components borrowed from quantum-optical applications, we can recover spatial details of the observed source down to the diffraction limit of the Cherenkov telescope, set by its diameter at the mean wavelength of observation. For this, we propose to apply aperture synthesis techniques from pairwise and triple correlation of sub-pupil intensities, in order to reconstruct the image of a celestial source from its Fourier moduli and phase information, despite atmospheric turbulence. We examine the sensitivity of the method, i.e. limiting magnitude, and its implementation on existing or future high energy arrays of Cherenkov telescopes. We show that despite its poor optical quality compared to extremely large optical telescopes under construction, a Cherenkov telescope can provide diffraction limited imaging of celestial sources, in particular at the visible, down to violet wavelengths.
Intensity interferometry (II) exploits the second-order correlation to acquire the spatial frequency information of an object, which has been used to observe distant stars since 1950s. However, due to unreliability of employed imaging reconstruction algorithms, II can only image simple and sparse objects such as double stars. We here develop a method that overcomes this unreliability problem and enables imaging complex objects by combing II and a ptychography iterative algorithm. Different from previous ptychography iterative-type algorithms that work only for diffractive objects using coherence light sources, our method obtains the objects spatial spectrum from the second-order correlation of intensity fluctuation by using an incoherent source, which therefore largely simplifies the imaging process. Furthermore, by introducing loose supports in the ptychography algorithm, a high-quality image can be recovered without knowing the precise size and position of the scanning illumination, which is a strong requirement for traditional ptychography iterative algorithm.
Imaging Atmospheric Cherenkov Telescopes (IACTs) currently in operation feature large mirrors and order of 1 ns time response to signals of a few photo-electrons produced by optical photons. This means that they are ideally suited for optical interferometry observations. Thanks to their sensitivity to visible wavelengths and long baselines optical intensity interferometry with IACTs allows reaching angular resolutions of tens to microarcsec. We have installed a simple optical setup on top of the cameras of the two 17 m diameter MAGIC IACTs and observed coherent fluctuations in the photon intensity measured at the two telescopes for three different stars. The sensitivity is roughly 10 times better than that achieved in the 1970s with the Narrabri interferometer.
With the current revival of interest in astronomical intensity interferometry, it is interesting to revisit the associated theory, which was developed in the 1950s and 1960s. This paper argues that intensity interferometry can be understood as an extension of Fraunhofer diffraction to incoherent light. Interference patterns are still produced, but they are speckle-like and transient, changing on a time scale of $1/Delta u$ (where $Delta u$ is the frequency bandwidth) known as the coherence time. Bright fringes average less than one photon per coherence time, hence fringes change before they can be observed. But very occasionally, two or even more photons may be detected from an interference pattern within a coherence time. These rare coincident photons provide information about the underlying transient interference pattern, and hence about the source brightness distribution. Thinking in terms of transient sub-photon interference patterns makes it easy to see why intensity interferometry will have large optical-path tolerance, and be immune to atmospheric seeing. The unusual signal-to-noise properties also become evident. We illustrate the unobservable but conceptually useful transient interference patterns, and their observable correlation signal, with three simulated examples: (i) an elongated source like Achernar, (ii) a three-star system like Algol, and (iii) a crescent source that roughly mimics an exoplanet transit or perhaps the M87 black hole environment. Of these, (i) and (ii) are good targets for currently-planned setups, while (iii) is interesting to think about for the longer term.
The original intensity interferometers were instruments built in the 1950s and 60s by Hanbury Brown and collaborators, achieving milli-arcsec resolutions in visible light without optical-quality mirrors. They exploited a then-novel physical effect, now known as HBT correlation after the experiments of Hanbury Brown and Twiss, and nowadays considered fundamental in quantum optics. Now a new generation of inten- sity interferometers is being designed, raising the possibility of measuring intensity correlations with three or more detectors. Quantum optics predicts some interesting features in higher-order HBT. One is that HBT correlation increases combinatorially with the number of detectors. Signal to noise considerations suggest, that many-detector HBT correlations would be mea- surable for bright masers, but very difficult for thermal sources. But the more modest three-detector HBT correlation seems measurable for bright stars, and would provide image information (namely the bispectrum) not present in standard HBT.
The present articlereports on the first spatial intensity interferometry measurements on stars since the observations at Narrabri Observatory by Hanbury Brown et al. in the 1970s. Taking advantage of the progresses in recent years on photon-counting detectors and fast electronics, we were able to measure the zero-time delay intensity correlation $g^{(2)}(tau = 0, r)$ between the light collected by two 1-m optical telescopes separated by 15 m. Using two marginally resolved stars ($alpha$ Lyr and $beta$ Ori) with R magnitudes of 0.01 and 0.13 respectively, we demonstrate that 4-hour correlation exposures provide reliable visibilities, whilst a significant loss of contrast is found on alpha Aur, in agreement with its binary-star nature.