Do you want to publish a course? Click here

Listeners Social Identity Matters in Personalised Response Generation

98   0   0.0 ( 0 )
 Added by Guanyi Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Personalised response generation enables generating human-like responses by means of assigning the generator a social identity. However, pragmatics theory suggests that human beings adjust the way of speaking based on not only who they are but also whom they are talking to. In other words, when modelling personalised dialogues, it might be favourable if we also take the listeners social identity into consideration. To validate this idea, we use gender as a typical example of a social variable to investigate how the listeners identity influences the language used in Chinese dialogues on social media. Also, we build personalised generators. The experiment results demonstrate that the listeners identity indeed matters in the language use of responses and that the response generator can capture such differences in language use. More interestingly, by additionally modelling the listeners identity, the personalised response generator performs better in its own identity.



rate research

Read More

Previous research on empathetic dialogue systems has mostly focused on generating responses given certain emotions. However, being empathetic not only requires the ability of generating emotional responses, but more importantly, requires the understanding of user emotions and replying appropriately. In this paper, we propose a novel end-to-end approach for modeling empathy in dialogue systems: Mixture of Empathetic Listeners (MoEL). Our model first captures the user emotions and outputs an emotion distribution. Based on this, MoEL will softly combine the output states of the appropriate Listener(s), which are each optimized to react to certain emotions, and generate an empathetic response. Human evaluations on empathetic-dialogues (Rashkin et al., 2018) dataset confirm that MoEL outperforms multitask training baseline in terms of empathy, relevance, and fluency. Furthermore, the case study on generated responses of different Listeners shows high interpretability of our model.
Existing multi-turn context-response matching methods mainly concentrate on obtaining multi-level and multi-dimension representations and better interactions between context utterances and response. However, in real-place conversation scenarios, whether a response candidate is suitable not only counts on the given dialogue context but also other backgrounds, e.g., wording habits, user-specific dialogue history content. To fill the gap between these up-to-date methods and the real-world applications, we incorporate user-specific dialogue history into the response selection and propose a personalized hybrid matching network (PHMN). Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information; 2) we perform hybrid representation learning on context-response utterances and explicitly incorporate a customized attention mechanism to extract vital information from context-response interactions so as to improve the accuracy of matching. We evaluate our model on two large datasets with user identification, i.e., personalized Ubuntu dialogue Corpus (P-Ubuntu) and personalized Weibo dataset (P-Weibo). Experimental results confirm that our method significantly outperforms several strong models by combining personalized attention, wording behaviors, and hybrid representation learning.
Neural conversation models are known to generate appropriate but non-informative responses in general. A scenario where informativeness can be significantly enhanced is Conversing by Reading (CbR), where conversations take place with respect to a given external document. In previous work, the external document is utilized by (1) creating a context-aware document memory that integrates information from the document and the conversational context, and then (2) generating responses referring to the memory. In this paper, we propose to create the document memory with some anticipated responses in mind. This is achieved using a teacher-student framework. The teacher is given the external document, the context, and the ground-truth response, and learns how to build a response-aware document memory from three sources of information. The student learns to construct a response-anticipated document memory from the first two sources, and the teachers insight on memory creation. Empirical results show that our model outperforms the previous state-of-the-art for the CbR task.
Humans use commonsense reasoning (CSR) implicitly to produce natural and coherent responses in conversations. Aiming to close the gap between current response generation (RG) models and human communication abilities, we want to understand why RG models respond as they do by probing RG models understanding of commonsense reasoning that elicits proper responses. We formalize the problem by framing commonsense as a latent variable in the RG task and using explanations for responses as textual form of commonsense. We collect 6k annotated explanations justifying responses from four dialogue datasets and ask humans to verify them and propose two probing settings to evaluate RG models CSR capabilities. Probing results show that models fail to capture the logical relations between commonsense explanations and responses and fine-tuning on in-domain data and increasing model sizes do not lead to understanding of CSR for RG. We hope our study motivates more research in making RG models emulate the human reasoning process in pursuit of smooth human-AI communication.
Despite the great promise of Transformers in many sequence modeling tasks (e.g., machine translation), their deterministic nature hinders them from generalizing to high entropy tasks such as dialogue response generation. Previous work proposes to capture the variability of dialogue responses with a recurrent neural network (RNN)-based conditional variational autoencoder (CVAE). However, the autoregressive computation of the RNN limits the training efficiency. Therefore, we propose the Variational Transformer (VT), a variational self-attentive feed-forward sequence model. The VT combines the parallelizability and global receptive field of the Transformer with the variational nature of the CVAE by incorporating stochastic latent variables into Transformers. We explore two types of the VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of fine-grained latent variables. Then, the proposed models are evaluated on three conversational datasets with both automatic metric and human evaluation. The experimental results show that our models improve standard Transformers and other baselines in terms of diversity, semantic relevance, and human judgment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا