Do you want to publish a course? Click here

MoEL: Mixture of Empathetic Listeners

151   0   0.0 ( 0 )
 Added by Zhaojiang Lin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Previous research on empathetic dialogue systems has mostly focused on generating responses given certain emotions. However, being empathetic not only requires the ability of generating emotional responses, but more importantly, requires the understanding of user emotions and replying appropriately. In this paper, we propose a novel end-to-end approach for modeling empathy in dialogue systems: Mixture of Empathetic Listeners (MoEL). Our model first captures the user emotions and outputs an emotion distribution. Based on this, MoEL will softly combine the output states of the appropriate Listener(s), which are each optimized to react to certain emotions, and generate an empathetic response. Human evaluations on empathetic-dialogues (Rashkin et al., 2018) dataset confirm that MoEL outperforms multitask training baseline in terms of empathy, relevance, and fluency. Furthermore, the case study on generated responses of different Listeners shows high interpretability of our model.



rate research

Read More

In this paper, we present an end-to-end empathetic conversation agent CAiRE. Our system adapts TransferTransfo (Wolf et al., 2019) learning approach that fine-tunes a large-scale pre-trained language model with multi-task objectives: response language modeling, response prediction and dialogue emotion detection. We evaluate our model on the recently proposed empathetic-dialogues dataset (Rashkin et al., 2019), the experiment results show that CAiRE achieves state-of-the-art performance on dialogue emotion detection and empathetic response generation.
Since the late 1990s when speech companies began providing their customer-service software in the market, people have gotten used to speaking to machines. As people interact more often with voice and gesture controlled machines, they expect the machines to recognize different emotions, and understand other high level communication features such as humor, sarcasm and intention. In order to make such communication possible, the machines need an empathy module in them which can extract emotions from human speech and behavior and can decide the correct response of the robot. Although research on empathetic robots is still in the early stage, we described our approach using signal processing techniques, sentiment analysis and machine learning algorithms to make robots that can understand human emotion. We propose Zara the Supergirl as a prototype system of empathetic robots. It is a software based virtual android, with an animated cartoon character to present itself on the screen. She will get smarter and more empathetic through its deep learning algorithms, and by gathering more data and learning from it. In this paper, we present our work so far in the areas of deep learning of emotion and sentiment recognition, as well as humor recognition. We hope to explore the future direction of android development and how it can help improve peoples lives.
Personalised response generation enables generating human-like responses by means of assigning the generator a social identity. However, pragmatics theory suggests that human beings adjust the way of speaking based on not only who they are but also whom they are talking to. In other words, when modelling personalised dialogues, it might be favourable if we also take the listeners social identity into consideration. To validate this idea, we use gender as a typical example of a social variable to investigate how the listeners identity influences the language used in Chinese dialogues on social media. Also, we build personalised generators. The experiment results demonstrate that the listeners identity indeed matters in the language use of responses and that the response generator can capture such differences in language use. More interestingly, by additionally modelling the listeners identity, the personalised response generator performs better in its own identity.
Understanding speakers feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.
A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the users emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the users emotion, cognitive understanding of the users situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the users situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا