Do you want to publish a course? Click here

Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization

435   0   0.0 ( 0 )
 Added by Roland Zimmermann
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Feature visualizations such as synthetic maximally activating images are a widely used explanation method to better understand the information processing of convolutional neural networks (CNNs). At the same time, there are concerns that these visualizations might not accurately represent CNNs inner workings. Here, we measure how much extremely activating images help humans to predict CNN activations. Using a well-controlled psychophysical paradigm, we compare the informativeness of synthetic images by Olah et al. (2017) with a simple baseline visualization, namely exemplary natural images that also strongly activate a specific feature map. Given either synthetic or natural reference images, human participants choose which of two query images leads to strong positive activation. The experiments are designed to maximize participants performance, and are the first to probe intermediate instead of final layer representations. We find that synthetic images indeed provide helpful information about feature map activations ($82pm4%$ accuracy; chance would be $50%$). However, natural images - originally intended as a baseline - outperform synthetic images by a wide margin ($92pm2%$). Additionally, participants are faster and more confident for natural images, whereas subjective impressions about the interpretability of the feature visualizations are mixed. The higher informativeness of natural images holds across most layers, for both expert and lay participants as well as for hand- and randomly-picked feature visualizations. Even if only a single reference image is given, synthetic images provide less information than natural images ($65pm5%$ vs. $73pm4%$). In summary, synthetic images from a popular feature visualization method are significantly less informative for assessing CNN activations than natural images. We argue that visualization methods should improve over this baseline.



rate research

Read More

One widely used approach towards understanding the inner workings of deep convolutional neural networks is to visualize unit responses via activation maximization. Feature visualizations via activation maximization are thought to provide humans with precise information about the image features that cause a unit to be activated. If this is indeed true, these synthetic images should enable humans to predict the effect of an intervention, such as whether occluding a certain patch of the image (say, a dogs head) changes a units activation. Here, we test this hypothesis by asking humans to predict which of two square occlusions causes a larger change to a units activation. Both a large-scale crowdsourced experiment and measurements with experts show that on average, the extremely activating feature visualizations by Olah et al. (2017) indeed help humans on this task ($67 pm 4%$ accuracy; baseline performance without any visualizations is $60 pm 3%$). However, they do not provide any significant advantage over other visualizations (such as e.g. dataset samples), which yield similar performance ($66 pm 3%$ to $67 pm 3%$ accuracy). Taken together, we propose an objective psychophysical task to quantify the benefit of unit-level interpretability methods for humans, and find no evidence that feature visualizations provide humans with better causal understanding than simple alternative visualizations.
As an essential ingredient of modern deep learning, attention mechanism, especially self-attention, plays a vital role in the global correlation discovery. However, is hand-crafted attention irreplaceable when modeling the global context? Our intriguing finding is that self-attention is not better than the matrix decomposition (MD) model developed 20 years ago regarding the performance and computational cost for encoding the long-distance dependencies. We model the global context issue as a low-rank recovery problem and show that its optimization algorithms can help design global information blocks. This paper then proposes a series of Hamburgers, in which we employ the optimization algorithms for solving MDs to factorize the input representations into sub-matrices and reconstruct a low-rank embedding. Hamburgers with different MDs can perform favorably against the popular global context module self-attention when carefully coping with gradients back-propagated through MDs. Comprehensive experiments are conducted in the vision tasks where it is crucial to learn the global context, including semantic segmentation and image generation, demonstrating significant improvements over self-attention and its variants.
The goal of few-shot learning is to learn a classifier that can recognize unseen classes from limited support data with labels. A common practice for this task is to train a model on the base set first and then transfer to novel classes through fine-tuning (Here fine-tuning procedure is defined as transferring knowledge from base to novel data, i.e. learning to transfer in few-shot scenario.) or meta-learning. However, as the base classes have no overlap to the novel set, simply transferring whole knowledge from base data is not an optimal solution since some knowledge in the base model may be biased or even harmful to the novel class. In this paper, we propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model. Specifically, layers will be imposed different learning rates if they are chosen to be fine-tuned, to control the extent of preserved transferability. To determine which layers to be recast and what values of learning rates for them, we introduce an evolutionary search based method that is efficient to simultaneously locate the target layers and determine their individual learning rates. We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method. It achieves the state-of-the-art performance on both meta-learning and non-meta based frameworks. Furthermore, we extend our method to the conventional pre-training + fine-tuning paradigm and obtain consistent improvement.
Diabetic retinopathy (DR) is one of the most common eye conditions among diabetic patients. However, vision loss occurs primarily in the late stages of DR, and the symptoms of visual impairment, ranging from mild to severe, can vary greatly, adding to the burden of diagnosis and treatment in clinical practice. Deep learning methods based on retinal images have achieved remarkable success in automatic DR grading, but most of them neglect that the presence of diabetes usually affects both eyes, and ophthalmologists usually compare both eyes concurrently for DR diagnosis, leaving correlations between left and right eyes unexploited. In this study, simulating the diagnostic process, we propose a two-stream binocular network to capture the subtle correlations between left and right eyes, in which, paired images of eyes are fed into two identical subnetworks separately during training. We design a contrastive grading loss to learn binocular correlation for five-class DR detection, which maximizes inter-class dissimilarity while minimizing the intra-class difference. Experimental results on the EyePACS dataset show the superiority of the proposed binocular model, outperforming monocular methods by a large margin.
297 - Dongxu Li , Chenchen Xu , Xin Yu 2020
Sign language translation (SLT) aims to interpret sign video sequences into text-based natural language sentences. Sign videos consist of continuous sequences of sign gestures with no clear boundaries in between. Existing SLT models usually represent sign visual features in a frame-wise manner so as to avoid needing to explicitly segmenting the videos into isolated signs. However, these methods neglect the temporal information of signs and lead to substantial ambiguity in translation. In this paper, we explore the temporal semantic structures of signvideos to learn more discriminative features. To this end, we first present a novel sign video segment representation which takes into account multiple temporal granularities, thus alleviating the need for accurate video segmentation. Taking advantage of the proposed segment representation, we develop a novel hierarchical sign video feature learning method via a temporal semantic pyramid network, called TSPNet. Specifically, TSPNet introduces an inter-scale attention to evaluate and enhance local semantic consistency of sign segments and an intra-scale attention to resolve semantic ambiguity by using non-local video context. Experiments show that our TSPNet outperforms the state-of-the-art with significant improvements on the BLEU score (from 9.58 to 13.41) and ROUGE score (from 31.80 to 34.96)on the largest commonly-used SLT dataset. Our implementation is available at https://github.com/verashira/TSPNet.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا