Do you want to publish a course? Click here

Partial Is Better Than All: Revisiting Fine-tuning Strategy for Few-shot Learning

248   0   0.0 ( 0 )
 Added by Zhiqiang Shen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The goal of few-shot learning is to learn a classifier that can recognize unseen classes from limited support data with labels. A common practice for this task is to train a model on the base set first and then transfer to novel classes through fine-tuning (Here fine-tuning procedure is defined as transferring knowledge from base to novel data, i.e. learning to transfer in few-shot scenario.) or meta-learning. However, as the base classes have no overlap to the novel set, simply transferring whole knowledge from base data is not an optimal solution since some knowledge in the base model may be biased or even harmful to the novel class. In this paper, we propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model. Specifically, layers will be imposed different learning rates if they are chosen to be fine-tuned, to control the extent of preserved transferability. To determine which layers to be recast and what values of learning rates for them, we introduce an evolutionary search based method that is efficient to simultaneously locate the target layers and determine their individual learning rates. We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method. It achieves the state-of-the-art performance on both meta-learning and non-meta based frameworks. Furthermore, we extend our method to the conventional pre-training + fine-tuning paradigm and obtain consistent improvement.



rate research

Read More

Adversarial Training (AT) with Projected Gradient Descent (PGD) is an effective approach for improving the robustness of the deep neural networks. However, PGD AT has been shown to suffer from two main limitations: i) high computational cost, and ii) extreme overfitting during training that leads to reduction in model generalization. While the effect of factors such as model capacity and scale of training data on adversarial robustness have been extensively studied, little attention has been paid to the effect of a very important parameter in every network optimization on adversarial robustness: the learning rate. In particular, we hypothesize that effective learning rate scheduling during adversarial training can significantly reduce the overfitting issue, to a degree where one does not even need to adversarially train a model from scratch but can instead simply adversarially fine-tune a pre-trained model. Motivated by this hypothesis, we propose a simple yet very effective adversarial fine-tuning approach based on a $textit{slow start, fast decay}$ learning rate scheduling strategy which not only significantly decreases computational cost required, but also greatly improves the accuracy and robustness of a deep neural network. Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets in both test accuracy and the robustness, while reducing the computational cost by 8-10$times$. Furthermore, a very important benefit of the proposed adversarial fine-tuning approach is that it enables the ability to improve the robustness of any pre-trained deep neural network without needing to train the model from scratch, which to the best of the authors knowledge has not been previously demonstrated in research literature.
Partial-label learning (PLL) generally focuses on inducing a noise-tolerant multi-class classifier by training on overly-annotated samples, each of which is annotated with a set of labels, but only one is the valid label. A basic promise of existing PLL solutions is that there are sufficient partial-label (PL) samples for training. However, it is more common than not to have just few PL samples at hand when dealing with new tasks. Furthermore, existing few-shot learning algorithms assume precise labels of the support set; as such, irrelevant labels may seriously mislead the meta-learner and thus lead to a compromised performance. How to enable PLL under a few-shot learning setting is an important problem, but not yet well studied. In this paper, we introduce an approach called FsPLL (Few-shot PLL). FsPLL first performs adaptive distance metric learning by an embedding network and rectifying prototypes on the tasks previously encountered. Next, it calculates the prototype of each class of a new task in the embedding network. An unseen example can then be classified via its distance to each prototype. Experimental results on widely-used few-shot datasets (Omniglot and miniImageNet) demonstrate that our FsPLL can achieve a superior performance than the state-of-the-art methods across different settings, and it needs fewer samples for quickly adapting to new tasks.
302 - Jianyi Li , Guizhong Liu 2021
Metric learning is a widely used method for few shot learning in which the quality of prototypes plays a key role in the algorithm. In this paper we propose the trainable prototypes for distance measure instead of the artificial ones within the meta-training and task-training framework. Also to avoid the disadvantages that the episodic meta-training brought, we adopt non-episodic meta-training based on self-supervised learning. Overall we solve the few-shot tasks in two phases: meta-training a transferable feature extractor via self-supervised learning and training the prototypes for metric classification. In addition, the simple attention mechanism is used in both meta-training and task-training. Our method achieves state-of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification dataset, with about 20% increase compared to the available unsupervised few-shot learning methods.
This paper is a study of fine-tuning of BERT contextual representations, with focus on commonly observed instabilities in few-sample scenarios. We identify several factors that cause this instability: the common use of a non-standard optimization method with biased gradient estimation; the limited applicability of significant parts of the BERT network for down-stream tasks; and the prevalent practice of using a pre-determined, and small number of training iterations. We empirically test the impact of these factors, and identify alternative practices that resolve the commonly observed instability of the process. In light of these observations, we re-visit recently proposed methods to improve few-sample fine-tuning with BERT and re-evaluate their effectiveness. Generally, we observe the impact of these methods diminishes significantly with our modified process.
Adversarial training, a method for learning robust deep networks, is typically assumed to be more expensive than traditional training due to the necessity of constructing adversarial examples via a first-order method like projected gradient decent (PGD). In this paper, we make the surprising discovery that it is possible to train empirically robust models using a much weaker and cheaper adversary, an approach that was previously believed to be ineffective, rendering the method no more costly than standard training in practice. Specifically, we show that adversarial training with the fast gradient sign method (FGSM), when combined with random initialization, is as effective as PGD-based training but has significantly lower cost. Furthermore we show that FGSM adversarial training can be further accelerated by using standard techniques for efficient training of deep networks, allowing us to learn a robust CIFAR10 classifier with 45% robust accuracy to PGD attacks with $epsilon=8/255$ in 6 minutes, and a robust ImageNet classifier with 43% robust accuracy at $epsilon=2/255$ in 12 hours, in comparison to past work based on free adversarial training which took 10 and 50 hours to reach the same respective thresholds. Finally, we identify a failure mode referred to as catastrophic overfitting which may have caused previous attempts to use FGSM adversarial training to fail. All code for reproducing the experiments in this paper as well as pretrained model weights are at https://github.com/locuslab/fast_adversarial.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا