Do you want to publish a course? Click here

(Symplectic) Leaves and (5d Higgs) Branches in the Poly(go)nesian Tropical Rain Forest

99   0   0.0 ( 0 )
 Added by Antoine Bourget
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We derive the structure of the Higgs branch of 5d superconformal field theories or gauge theories from their realization as a generalized toric polygon (or dot diagram). This approach is motivated by a dual, tropical curve decomposition of the $(p,q)$ 5-brane-web system. We define an edge coloring, which provides a decomposition of the generalized toric polygon into a refined Minkowski sum of sub-polygons, from which we compute the magnetic quiver. The Coulomb branch of the magnetic quiver is then conjecturally identified with the 5d Higgs branch. Furthermore, from partial resolutions, we identify the symplectic leaves of the Higgs branch and thereby the entire foliation structure. In the case of strictly toric polygons, this approach reduces to the description of deformations of the Calabi-Yau singularities in terms of Minkowski sums.



rate research

Read More

5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in arXiv:2008.05577, which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.
Superconformal five dimensional theories have a rich structure of phases and brane webs play a crucial role in studying their properties. This paper is devoted to the study of a three parameter family of SQCD theories, given by the number of colors $N_c$ for an $SU(N_c)$ gauge theory, number of fundamental flavors $N_f$, and the Chern Simons level $k$. The study of their infinite coupling Higgs branch is a long standing problem and reveals a rich pattern of moduli spaces, depending on the 3 values in a critical way. For a generic choice of the parameters we find a surprising number of 3 different components, with intersections that are closures of height 2 nilpotent orbits of the flavor symmetry. This is in contrast to previous studies where except for one case ($N_c=2, N_f=2$), the parameters were restricted to the cases of Higgs branches that have only one component. The new feature is achieved thanks to a concept in tropical geometry which is called stable intersection and allows for a computation of the Higgs branch to almost all the cases which were previously unknown for this three parameter family apart form certain small number of exceptional theories with low rank gauge group. A crucial feature in the construction of the Higgs branch is the notion of dressed monopole operators.
180 - Z. Bajnok , D. Nogradi 2000
The symplectic leaves of W-algebras are the intersections of the symplectic leaves of the Kac-Moody algebras and the hypersurface of the second class constraints, which define the W-algebra. This viewpoint enables us to classify the symplectic leaves and also to give a representative for each of them. The case of the (W_{2}) (Virasoro) algebra is investigated in detail, where the positivity of the energy functional is also analyzed.
We study the Higgs branch of 5d superconformal theories engineered from brane webs with orientifold five-planes. We propose a generalization of the rules to derive magnetic quivers from brane webs pioneered in arXiv:2004.04082, by analyzing theories that can be described with a brane web with and without O5 planes. Our proposed magnetic quivers include novel features, such as hypermultiplets transforming in the fundamental-fundamental representation of two gauge nodes, antisymmetric matter, and $mathbb{Z}_2$ gauge nodes. We test our results by computing the Coulomb and Higgs branch Hilbert series of the magnetic quivers obtained from the two distinct constructions and find agreement in all cases.
65 - Yecong Wan , Yuanshuo Cheng , 2021
Rain removal plays an important role in the restoration of degraded images. Recently, data-driven methods have achieved remarkable success. However, these approaches neglect that the appearance of rain is often accompanied by low light conditions, which will further degrade the image quality. Therefore, it is very indispensable to jointly remove the rain and enhance the light for real-world rain image restoration. In this paper, we aim to address this problem from two aspects. First, we proposed a novel entangled network, namely EMNet, which can remove the rain and enhance illumination in one go. Specifically, two encoder-decoder networks interact complementary information through entanglement structure, and parallel rain removal and illumination enhancement. Considering that the encoder-decoder structure is unreliable in preserving spatial details, we employ a detail recovery network to restore the desired fine texture. Second, we present a new synthetic dataset, namely DarkRain, to boost the development of rain image restoration algorithms in practical scenarios. DarkRain not only contains different degrees of rain, but also considers different lighting conditions, and more realistically simulates the rainfall in the real world. EMNet is extensively evaluated on the proposed benchmark and achieves state-of-the-art results. In addition, after a simple transformation, our method outshines existing methods in both rain removal and low-light image enhancement. The source code and dataset will be made publicly available later.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا