Do you want to publish a course? Click here

(5d RG-flow) Trees in the Tropical Rain Forest

63   0   0.0 ( 0 )
 Added by Marieke van Beest
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

5d superconformal field theories (SCFTs) can be obtained from 6d SCFTs by circle compactification and mass deformation. Successive decoupling of hypermultiplet matter and RG-flow generates a decoupling tree of descendant 5d SCFTs. In this paper we determine the magnetic quivers and Hasse diagrams, that encode the Higgs branches of 5d SCFTs, for entire decoupling trees. Central to this undertaking is the approach in arXiv:2008.05577, which, starting from the generalized toric polygons (GTPs) dual to 5-brane webs/tropical curves, provides a systematic and succinct derivation of magnetic quivers and their Hasse diagrams. The decoupling in the GTP description is straightforward, and generalizes the standard flop transitions of curves in toric polygons. We apply this approach to a large class of 5d KK-theories, and compute the Higgs branches for their descendants. In particular we determine the decoupling tree for all rank 2 5d SCFTs. For each tree, we also identify the flavor symmetry algebras from the magnetic quivers, including non-simply-laced flavor symmetries.



rate research

Read More

We derive the structure of the Higgs branch of 5d superconformal field theories or gauge theories from their realization as a generalized toric polygon (or dot diagram). This approach is motivated by a dual, tropical curve decomposition of the $(p,q)$ 5-brane-web system. We define an edge coloring, which provides a decomposition of the generalized toric polygon into a refined Minkowski sum of sub-polygons, from which we compute the magnetic quiver. The Coulomb branch of the magnetic quiver is then conjecturally identified with the 5d Higgs branch. Furthermore, from partial resolutions, we identify the symplectic leaves of the Higgs branch and thereby the entire foliation structure. In the case of strictly toric polygons, this approach reduces to the description of deformations of the Calabi-Yau singularities in terms of Minkowski sums.
141 - Ki-Seok Kim , Chanyong Park 2016
Utilizing the holographic technique, we investigate how the entanglement entropy evolves along the RG flow. After introducing a new generalized temperature which satisfies the thermodynamics-like law even in the IR regime, we find that the renormalized entropy and the generalized temperature in the IR limit approach the thermal entropy and thermodynamic temperature of a real thermal system. This result implies that the microscopic quantum entanglement entropy in the IR region leads to the thermodynamic relation up to small quantum corrections caused by the quantum entanglement near the entangling surface. Intriguingly, this IR feature of the entanglement entropy universally happens regardless of the detail of the dual field theory and the shape of the entangling surface. We check this IR universality with a most general geometry called the hyperscaling violation geometry which is dual to a relativistic non-conformal field theory.
The duality between a $d$-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS$_{d+1}$ geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS$_4$ gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS$_4$ metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.
We construct the holographic renormalization group (RG) flow of thermo-electric conductivities when the translational symmetry is broken. The RG flow is probed by the intrinsic observers hovering on the sliding radial membranes. We obtain the RG flow by solving a matrix-form Riccati equation. The RG flow provides a high-efficient numerical method to calculate the thermo-electric conductivities of strongly coupled systems with momentum dissipation. As an illustration, we recover the AC thermo-electric conductivities in the Einstein-Maxwell-axion model. Moreover, in several homogeneous and isotropic holographic models which dissipate the momentum and have the finite density, it is found that the RG flow of a particular combination of DC thermo-electric conductivities does not run. As a result, the DC thermal conductivity on the boundary field theory can be derived analytically, without using the conserved thermal current.
We derive the renormalization group evolution of the quartic scalar theory with spontaneous symmetry breaking from an alternative flow equation, obtained within the externally sourced two-particle irreducible framework due to Garbrecht and Millington. In order to make a straightforward comparison with the evolution from the standard Wetterich-Morris-Ellwanger equation, we employ the Litim regulator, work to lowest order in the derivative expansion and neglect anomalous scaling. By this means, we illustrate the leading differences between analytic expressions for the resulting threshold and (non-perturbative) beta functions. In four dimensions, we find that the positions of the potential minima and the cosmological constant evolve more rapidly with scale compared to the standard approach, whereas the quartic coupling evolves more slowly, albeit by a small amount. These differences may have implications for the asymptotic safety programme, as well as our understanding of the non-perturbative scale evolution of the Standard Model Higgs sector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا