Do you want to publish a course? Click here

Rain Removal and Illumination Enhancement Done in One Go

66   0   0.0 ( 0 )
 Added by Wan YeCong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Rain removal plays an important role in the restoration of degraded images. Recently, data-driven methods have achieved remarkable success. However, these approaches neglect that the appearance of rain is often accompanied by low light conditions, which will further degrade the image quality. Therefore, it is very indispensable to jointly remove the rain and enhance the light for real-world rain image restoration. In this paper, we aim to address this problem from two aspects. First, we proposed a novel entangled network, namely EMNet, which can remove the rain and enhance illumination in one go. Specifically, two encoder-decoder networks interact complementary information through entanglement structure, and parallel rain removal and illumination enhancement. Considering that the encoder-decoder structure is unreliable in preserving spatial details, we employ a detail recovery network to restore the desired fine texture. Second, we present a new synthetic dataset, namely DarkRain, to boost the development of rain image restoration algorithms in practical scenarios. DarkRain not only contains different degrees of rain, but also considers different lighting conditions, and more realistically simulates the rainfall in the real world. EMNet is extensively evaluated on the proposed benchmark and achieves state-of-the-art results. In addition, after a simple transformation, our method outshines existing methods in both rain removal and low-light image enhancement. The source code and dataset will be made publicly available later.



rate research

Read More

Retinal images have been widely used by clinicians for early diagnosis of ocular diseases. However, the quality of retinal images is often clinically unsatisfactory due to eye lesions and imperfect imaging process. One of the most challenging quality degradation issues in retinal images is non-uniform which hinders the pathological information and further impairs the diagnosis of ophthalmologists and computer-aided analysis.To address this issue, we propose a non-uniform illumination removal network for retinal image, called NuI-Go, which consists of three Recursive Non-local Encoder-Decoder Residual Blocks (NEDRBs) for enhancing the degraded retinal images in a progressive manner. Each NEDRB contains a feature encoder module that captures the hierarchical feature representations, a non-local context module that models the context information, and a feature decoder module that recovers the details and spatial dimension. Additionally, the symmetric skip-connections between the encoder module and the decoder module provide long-range information compensation and reuse. Extensive experiments demonstrate that the proposed method can effectively remove the non-uniform illumination on retinal images while well preserving the image details and color. We further demonstrate the advantages of the proposed method for improving the accuracy of retinal vessel segmentation.
161 - Hong Wang , Yichen Wu , Minghan Li 2019
Rain streaks might severely degenerate the performance of video/image processing tasks. The investigations on rain removal from video or a single image has thus been attracting much research attention in the field of computer vision and pattern recognition, and various methods have been proposed against this task in the recent years. However, there is still not a comprehensive survey paper to summarize current rain removal methods and fairly compare their generalization performance, and especially, still not a off-the-shelf toolkit to accumulate recent representative methods for easy performance comparison and capability evaluation. Aiming at this meaningful task, in this study we present a comprehensive review for current rain removal methods for video and a single image. Specifically, these methods are categorized into model-driven and data-driven approaches, and more elaborate branches of each approach are further introduced. Intrinsic capabilities, especially generalization, of representative state-of-the-art methods of each approach have been evaluated and analyzed by experiments implemented on synthetic and real data both visually and quantitatively. Furthermore, we release a comprehensive repository, including direct links to 74 rain removal papers, source codes of 9 methods for video rain removal and 20 ones for single image rain removal, 19 related project pages, 6 synthetic datasets and 4 real ones, and 4 commonly used image quality metrics, to facilitate reproduction and performance comparison of current existing methods for general users. Some limitations and research issues worthy to be further investigated have also been discussed for future research of this direction.
70 - Hong Wang , Qi Xie , Qian Zhao 2020
Deep learning (DL) methods have achieved state-of-the-art performance in the task of single image rain removal. Most of current DL architectures, however, are still lack of sufficient interpretability and not fully integrated with physical structures inside general rain streaks. To this issue, in this paper, we propose a model-driven deep neural network for the task, with fully interpretable network structures. Specifically, based on the convolutional dictionary learning mechanism for representing rain, we propose a novel single image deraining model and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. Such a simple implementation scheme facilitates us to unfold it into a new deep network architecture, called rain convolutional dictionary network (RCDNet), with almost every network module one-to-one corresponding to each operation involved in the algorithm. By end-to-end training the proposed RCDNet, all the rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to its better deraining performance, especially in real scenarios. Comprehensive experiments substantiate the superiority of the proposed network, especially its well generality to diverse testing scenarios and good interpretability for all its modules, as compared with state-of-the-arts both visually and quantitatively. The source codes are available at url{https://github.com/hongwang01/RCDNet}.
Images obtained in real-world low-light conditions are not only low in brightness, but they also suffer from many other types of degradation, such as color bias, unknown noise, detail loss and halo artifacts. In this paper, we propose a very fast deep learning framework called Bringing the Lightness (denoted as BLNet) that consists of two U-Nets with a series of well-designed loss functions to tackle all of the above degradations. Based on Retinex Theory, the decomposition net in our model can decompose low-light images into reflectance and illumination and remove noise in the reflectance during the decomposition phase. We propose a Noise and Color Bias Control module (NCBC Module) that contains a convolutional neural network and two loss functions (noise loss and color loss). This module is only used to calculate the loss functions during the training phase, so our method is very fast during the test phase. This module can smooth the reflectance to achieve the purpose of noise removal while preserving details and edge information and controlling color bias. We propose a network that can be trained to learn the mapping between low-light and normal-light illumination and enhance the brightness of images taken in low-light illumination. We train and evaluate the performance of our proposed model over the real-world Low-Light (LOL) dataset), and we also test our model over several other frequently used datasets (LIME, DICM and MEF datasets). We conduct extensive experiments to demonstrate that our approach achieves a promising effect with good rubustness and generalization and outperforms many other state-of-the-art methods qualitatively and quantitatively. Our method achieves high speed because we use loss functions instead of introducing additional denoisers for noise removal and color correction. The code and model are available at https://github.com/weixinxu666/BLNet.
489 - Hong Wang , Qi Xie , Qian Zhao 2021
As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability. In specific, we first establish a RCD model for representing rain streaks and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. By unfolding it, we then build the RCDNet in which every network module has clear physical meanings and corresponds to each operation involved in the algorithm. This good interpretability greatly facilitates an easy visualization and analysis on what happens inside the network and why it works well in inference process. Moreover, taking into account the domain gap issue in real scenarios, we further design a novel dynamic RCDNet, where the rain kernels can be dynamically inferred corresponding to input rainy images and then help shrink the space for rain layer estimation with few rain maps so as to ensure a fine generalization performance in the inconsistent scenarios of rain types between training and testing data. By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to better deraining performance. Comprehensive experiments substantiate the superiority of our method, especially on its well generality to diverse testing scenarios and good interpretability for all its modules. Code is available in emph{url{https://github.com/hongwang01/DRCDNet}}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا