Do you want to publish a course? Click here

Deformation theory of bialgebras, higher Hochschild cohomology and formality

286   0   0.0 ( 0 )
 Added by Sinan Yalin
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A first goal of this paper is to precisely relate the homotopy theories of bialgebras and $E_2$-algebras. For this, we construct a conservative and fully faithful $infty$-functor from pointed conilpotent homotopy bialgebras to augmented $E_2$-algebras which consists in an appropriate cobar construction. Then we prove that the (derived) formal moduli problem of homotopy bialgebras structures on a bialgebra is equivalent to the (derived) formal moduli problem of $E_2$-algebra structures on this cobar construction. We show consequently that the $E_3$-algebra structure on the higher Hochschild complex of this cobar construction, given by the solution to the higher Deligne conjecture, controls the deformation theory of this bialgebra. This implies the existence of an $E_3$-structure on the deformation complex of a dg bialgebra, solving a long-standing conjecture of Gerstenhaber-Schack. On this basis we solve a long-standing conjecture of Kontsevich, by proving the $E_3$-formality of the deformation complex of the symmetric bialgebra. This provides as a corollary a new proof of Etingof-Kazdhan deformation quantization of Lie bialgebras which extends to homotopy dg Lie bialgebras and is independent from the choice of an associator. Along the way, we establish new general results of independent interest about the deformation theory of algebraic structures, which shed a new light on various deformation complexes and cohomology theories studied in the literature.



rate research

Read More

We use factorization homology and higher Hochschild (co)chains to study various problems in algebraic topology and homotopical algebra, notably brane topology, centralizers of $E_n$-algebras maps and iterated bar constructions. In particular, we obtain an $E_{n+1}$-algebra model on the shifted integral chains of the mapping space of the n-sphere into an orientable closed manifold $M$. We construct and use $E_infty$-Poincare duality to identify higher Hochschild cochains, modeled over the $n$-sphere, with the chains on the above mapping space, and then relate Hochschild cochains to the deformation complex of the $E_infty$-algebra $C^*(M)$, thought of as an $E_n$-algebra. We invoke (and prove) the higher Deligne conjecture to furnish $E_n$-Hochschild cohomology, and all that is naturally equivalent to it, with an $E_{n+1}$-algebra structure. We prove that this construction recovers the sphere product. In fact, our approach to the Deligne conjecture is based on an explicit description of the $E_n$-centralizers of a map of $E_infty$-algebras $f:Ato B$ by relating it to the algebraic structure on Hochschild cochains modeled over spheres, which is of independent interest and explicit. More generally, we give a factorization algebra model/description of the centralizer of any $E_n$-algebra map and a solution of Deligne conjecture. We also apply similar ideas to the iterated bar construction. We obtain factorization algebra models for (iterated) bar construction of augmented $E_m$-algebras together with their $E_n$-coalgebras and $E_{m-n}$-algebra structures, and discuss some of its features. For $E_infty$-algebras we obtain a higher Hochschild chain model, which is an $E_n$-coalgebra. In particular, considering an n-connected topological space $Y$, we obtain a higher Hochschild cochain model of the natural $E_n$-algebra structure of the chains of the iterated loop space of $Y$.
115 - P. Hu , I. Kriz , A. A. Voronov 2003
Let an n-algebra mean an algebra over the chain complex of the little n-cubes operad. We give a proof of Kontsevichs conjecture, which states that for a suitable notion of Hochschild cohomology in the category of n-algebras, the Hochschild cohomology complex of an n-algebra is an (n+1)-algebra. This generalizes a conjecture by Deligne for n=1, now proven by several authors.
We give a popular introduction to formality theorems for Hochschild complexes and their applications. We review some of the recent results and prove that the truncated Hochschild cochain complex of a polynomial algebra is non-formal.
In this paper we construct a graded Lie algebra on the space of cochains on a $mathbbZ_2$-graded vector space that are skew-symmetric in the odd variables. The Lie bracket is obtained from the classical Gerstenhaber bracket by (partial) skew-symmetrization; the coboundary operator is a skew-symmetrized version of the Hochschild differential. We show that an order-one element $m$ satisfying the zero-square condition $[m,m]=0$ defines an algebraic structure called Lie antialgebra. The cohomology (and deformation) theory of these algebras is then defined. We present two examples of non-trivial cohomology classes which are similar to the celebrated Gelfand-Fuchs and Godbillon-Vey classes.
296 - Gregory Ginot , Sinan Yalin 2019
The main purpose of this article is to develop an explicit derived deformation theory of algebraic structures at a high level of generality, encompassing in a common framework various kinds of algebras (associative, commutative, Poisson...) or bialgebras (associative and coassociative, Lie, Frobenius...), that is algebraic structures parametrized by props. A central aspect is that we define and study moduli spaces of deformations of algebraic structures up to quasi-isomorphisms (and not just isotopies or isomorphisms). To do so, we implement methods coming from derived algebraic geometry, by encapsulating these deformation theories as classifying (pre)stacks with good infinitesimal properties and %derived formal geometry, by means of derived formal moduli problems and derived formal groups. In particular, we prove that the Lie algebra describing the deformation theory of an object in a given $infty$-category of dg algebras can be obtained equivalently as the tangent complex of loops on a derived quotient of this moduli space by the homotopy automorphims of this object. Moreover, we provide explicit formulae for such derived deformation problems of algebraic structures up to quasi-isomorphisms and relate them in a precise way to other standard deformation problems of algebraic structures. This relation is given by a fiber sequence of the associated dg-Lie algebras of their deformation complexes. Our results provide simultaneously a vast generalization of standard deformation theory of algebraic structures which is suitable (and needed) to set up algebraic deformation theory both at the $infty$-categorical level and at a higher level of generality than algebras over operads. In addition, we study a general criterion to compare formal moduli problems of different algebraic structures and apply our formalism to $E_n$-algebras and bialgebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا