Do you want to publish a course? Click here

Functional connectome fingerprinting: Identifying individuals and predicting cognitive function via deep learning

141   0   0.0 ( 0 )
 Added by Biao Cai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The dynamic characteristics of functional network connectivity have been widely acknowledged and studied. Both shared and unique information has been shown to be present in the connectomes. However, very little has been known about whether and how this common pattern can predict the individual variability of the brain, i.e. brain fingerprinting, which attempts to reliably identify a particular individual from a pool of subjects. In this paper, we propose to enhance the individual uniqueness based on an autoencoder network. More specifically, we rely on the hypothesis that the common neural activities shared across individuals may lessen individual discrimination. By reducing contributions from shared activities, inter-subject variability can be enhanced. Results show that that refined connectomes utilizing an autoencoder with sparse dictionary learning can successfully distinguish one individual from the remaining participants with reasonably high accuracy (up to 99:5% for the rest-rest pair). Furthermore, high-level cognitive behavior (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted using refined functional connectivity profiles. As expected, the high-order association cortices contributed more to both individual discrimination and behavior prediction. The proposed approach provides a promising way to enhance and leverage the individualized characteristics of brain networks.



rate research

Read More

Functional connectivity quantifies the statistical dependencies between the activity of brain regions, measured using neuroimaging data such as functional MRI BOLD time series. The network representation of functional connectivity, called a Functional Connectome (FC), has been shown to contain an individual fingerprint allowing participants identification across consecutive testing sessions. Recently, researchers have focused on the extraction of these fingerprints, with potential applications in personalized medicine. Here, we show that a mathematical operation denominated degree-normalization can improve the extraction of FC fingerprints. Degree-normalization has the effect of reducing the excessive influence of strongly connected brain areas in the whole-brain network. We adopt the differential identifiability framework and apply it to both original and degree-normalized FCs of 409 individuals from the Human Connectome Project, in resting-state and 7 fMRI tasks. Our results indicate that degree-normalization systematically improves three fingerprinting metrics, namely differential identifiability, identification rate and matching rate. Moreover, the results related to the matching rate metric suggest that individual fingerprints are embedded in a low-dimensional space. The results suggest that low-dimensional functional fingerprints lie in part in weakly connected subnetworks of the brain, and that degree-normalization helps uncovering them. This work introduces a simple mathematical operation that could lead to significant improvements in future FCs fingerprinting studies.
159 - Marcus Kaiser 2020
In some cases, the function of a lesioned area can be compensated for by another area. However, it remains unpredictable if and by which other area a lesion can be compensated. We assume that similar incoming and outgoing connections are necessary to encode the same function as the damaged region. The similarity can be measured both locally using the matching index and looking at a more global scale by non-metric multidimensional scaling (NMDS). We tested how well both measures can predict the compensating area for the loss of the visual cortex in kittens. For this case study, the global comparison of connectivity turns out to be a better method for predicting functional compensation. In future studies, the extent of the similarity between the lesioned and compensating regions might be a measure of the extent to which function can be successfully recovered.
The connectome, or the entire connectivity of a neural system represented by network, ranges various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of C. elegans and the fibre tract network of human brains yielded through diffusion spectrum imaging (DSI). We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values but otherwise maximally random. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of C. elegans and human connectomes are both higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in C. elegans connectome or each region of interest (ROI) in human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared to the alternative arrangements. This implies that fewer rules are needed to encode for the organisation of neural systems.
177 - Leonid Perlovsky 2010
The paper discusses relationships between aesthetics theory and mathematical models of mind. Mathematical theory describes abilities for concepts, emotions, instincts, imagination, adaptation, learning, cognition, language, approximate hierarchy of the mind and evolution of these abilities. The knowledge instinct is the foundation of higher mental abilities and aesthetic emotions. Aesthetic emotions are present in every act of perception and cognition, and at the top of the mind hierarchy they become emotions of the beautiful. The learning ability is essential to everyday perception and cognition as well as to the historical development of understanding of the meaning of life. I discuss a controversy surrounding this issue. Conclusions based on cognitive and mathematical models confirm that judgments of taste are at once subjective and objective, and I discuss what it means. The paper relates cognitive and mathematical concepts to those of philosophy and aesthetics, from Plato to our days, clarifies cognitive mechanisms and functions of the beautiful, and resolves many difficulties of contemporary aesthetics.
By focusing on melancholic features with biological homogeneity, this study aimed to identify a small number of critical functional connections (FCs) that were specific only to the melancholic type of MDD. On the resting-state fMRI data, classifiers were developed to differentiate MDD patients from healthy controls (HCs). The classification accuracy was improved from 50 % (93 MDD and 93 HCs) to 70% (66 melancholic MDD and 66 HCs), when we specifically focused on the melancholic MDD with moderate or severer level of depressive symptoms. It showed 65% accuracy for the independent validation cohort. The biomarker score distribution showed improvements with escitalopram treatments, and also showed significant correlations with depression symptom scores. This classifier was specific to melancholic MDD, and it did not generalize in other mental disorders including autism spectrum disorder (ASD, 54% accuracy) and schizophrenia spectrum disorder (SSD, 45% accuracy). Among the identified 12 FCs from 9,316 FCs between whole brain anatomical node pairs, the left DLPFC / IFG region, which has most commonly been targeted for depression treatments, and its functional connections between Precuneus / PCC, and between right DLPFC / SMA areas had the highest contributions. Given the heterogeneity of the MDD, focusing on the melancholic features is the key to achieve high classification accuracy. The identified FCs specifically predicted the melancholic MDD and associated with subjective depressive symptoms. These results suggested key FCs of melancholic depression, and open doors to novel treatments targeting these regions in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا