No Arabic abstract
The paper discusses relationships between aesthetics theory and mathematical models of mind. Mathematical theory describes abilities for concepts, emotions, instincts, imagination, adaptation, learning, cognition, language, approximate hierarchy of the mind and evolution of these abilities. The knowledge instinct is the foundation of higher mental abilities and aesthetic emotions. Aesthetic emotions are present in every act of perception and cognition, and at the top of the mind hierarchy they become emotions of the beautiful. The learning ability is essential to everyday perception and cognition as well as to the historical development of understanding of the meaning of life. I discuss a controversy surrounding this issue. Conclusions based on cognitive and mathematical models confirm that judgments of taste are at once subjective and objective, and I discuss what it means. The paper relates cognitive and mathematical concepts to those of philosophy and aesthetics, from Plato to our days, clarifies cognitive mechanisms and functions of the beautiful, and resolves many difficulties of contemporary aesthetics.
Mathematical approaches to modeling the mind since the 1950s are reviewed. Difficulties faced by these approaches are related to the fundamental incompleteness of logic discovered by K. Godel. A recent mathematical advancement, dynamic logic (DL) overcame these past difficulties. DL is described conceptually and related to neuroscience, psychology, cognitive science, and philosophy. DL models higher cognitive functions: concepts, emotions, instincts, understanding, imagination, intuition, consciousness. DL is related to the knowledge instinct that drives our understanding of the world and serves as a foundation for higher cognitive functions. Aesthetic emotions and perception of beauty are related to everyday functioning of the mind. The article reviews mechanisms of human symbolic ability, language and cognition, joint evolution of the mind, consciousness, and cultures. It touches on a manifold of aesthetic emotions in music, their cognitive function, origin, and evolution. The article concentrates on elucidating the first principles and reviews aspects of the theory proven in laboratory research.
The dynamic characteristics of functional network connectivity have been widely acknowledged and studied. Both shared and unique information has been shown to be present in the connectomes. However, very little has been known about whether and how this common pattern can predict the individual variability of the brain, i.e. brain fingerprinting, which attempts to reliably identify a particular individual from a pool of subjects. In this paper, we propose to enhance the individual uniqueness based on an autoencoder network. More specifically, we rely on the hypothesis that the common neural activities shared across individuals may lessen individual discrimination. By reducing contributions from shared activities, inter-subject variability can be enhanced. Results show that that refined connectomes utilizing an autoencoder with sparse dictionary learning can successfully distinguish one individual from the remaining participants with reasonably high accuracy (up to 99:5% for the rest-rest pair). Furthermore, high-level cognitive behavior (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted using refined functional connectivity profiles. As expected, the high-order association cortices contributed more to both individual discrimination and behavior prediction. The proposed approach provides a promising way to enhance and leverage the individualized characteristics of brain networks.
The dominant modeling framework for understanding cortical computations are heuristic firing rate models. Despite their success, these models fall short to capture spike synchronization effects, to link to biophysical parameters and to describe finite-size fluctuations. In this opinion article, we propose that the refractory density method (RDM), also known as age-structured population dynamics or quasi-renewal theory, yields a powerful theoretical framework to build rate-based models for mesoscopic neural populations from realistic neuron dynamics at the microscopic level. We review recent advances achieved by the RDM to obtain efficient population density equations for networks of generalized integrate-and-fire (GIF) neurons -- a class of neuron models that has been successfully fitted to various cell types. The theory not only predicts the nonstationary dynamics of large populations of neurons but also permits an extension to finite-size populations and a systematic reduction to low-dimensional rate dynamics. The new types of rate models will allow a re-examination of models of cortical computations under biological constraints.
The Mozart effect refers to scientific data on short-term improvement on certain mental tasks after listening to Mozart, and also to its popularized version that listening to Mozart makes you smarter (Tomatis, 1991; Wikipedia, 2012). Does Mozart effect point to a fundamental cognitive function of music? Would such an effect of music be due to the hedonicity, a fundamental dimension of mental experience? The present paper explores a recent hypothesis that music helps to tolerate cognitive dissonances and thus enabled accumulation of knowledge and human cultural evolution (Perlovsky, 2010, 2012). We studied whether the influence of music is related to its hedonicity and whether pleasant or unpleasant music would influence scholarly test performance and cognitive dissonance. Specific hypotheses evaluated here are that during a test students experience contradictory cognitions that cause cognitive dissonances. If some music helps to tolerate cognitive dissonances, then first, this music should increase the duration during which participants can tolerate stressful conditions while evaluating test choices. Second, this should result in improved performance. These hypotheses are tentatively confirmed in the reported experiments as the agreeable music was correlated with better performance above that under indifferent or unpleasant music. It follows that music likely performs a fundamental cognitive function explaining the origin and evolution of musical ability considered previously a mystery.
Recognizing that all mental processes have to be unfree and passive, we develop a model of behavior and perceptions. We shall see how misleading our intuition is and shall understand how consciousness arises.