No Arabic abstract
We propose and analyze two regularized finite difference methods for the logarithmic Klein-Gordon equation (LogKGE). Due to the blowup phenomena caused by the logarithmic nonlinearity of the LogKGE, it is difficult to construct numerical schemes and establish their error bounds. In order to avoid singularity, we present a regularized logarithmic Klein-Gordon equation (RLogKGE) with a small regularized parameter $0<varepsilonll1$. Besides, two finite difference methods are adopted to solve the regularized logarithmic Klein-Gordon equation (RLogKGE) and rigorous error bounds are estimated in terms of the mesh size $h$, time step $tau$, and the small regularized parameter $varepsilon$. Finally, numerical experiments are carried out to verify our error estimates of the two numerical methods and the convergence results from the LogKGE to the RLogKGE with the linear convergence order $O(varepsilon)$.
We present and analyze two regularized finite difference methods which preserve energy of the logarithmic Klein-Gordon equation (LogKGE). In order to avoid singularity caused by the logarithmic nonlinearity of the LogKGE, we propose a regularized logarithmic Klein-Gordon equation (RLogKGE) with a small regulation parameter $0<varepsilonll1$ to approximate the LogKGE with the convergence order $O(varepsilon)$. By adopting the energy method, the inverse inequality, and the cut-off technique of the nonlinearity to bound the numerical solution, the error bound $O(h^{2}+frac{tau^{2}}{varepsilon^{2}})$ of the two schemes with the mesh size $h$, the time step $tau$ and the parameter $varepsilon$. Numerical results are reported to support our conclusions.
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.
This article resolves some errors in the paper Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE 4 (2011) no. 3, 405-460. The errors are in the energy-critical cases in two and higher dimensions.
We prove global well-posedness for the 3D Klein-Gordon equation with a concentrated nonlinearity.
We present an efficient second-order finite difference scheme for solving the 2D sine-Gordon equation, which can inherit the discrete energy conservation for the undamped model theoretically. Due to the semi-implicit treatment for the nonlinear term, it leads to a sequence of nonlinear coupled equations. We use a linear iteration algorithm, which can solve them efficiently, and the contraction mapping property is also proven. Based on truncation errors of the numerical scheme, the convergence analysis in the discrete $l^2$-norm is investigated in detail. Moreover, we carry out various numerical simulations, such as verifications of the second order accuracy, tests of energy conservation and circular ring solitons, to demonstrate the efficiency and the robustness of the proposed scheme.