No Arabic abstract
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.
In this paper we prove the existence of vortices, namely standing waves with non null angular momentum, for the nonlinear Klein-Gordon equation in dimension $Ngeq 3$. We show with variational methods that the existence of these kind of solutions, that we have called emph{hylomorphic vortices}, depends on a suitable energy-charge ratio. Our variational approach turns out to be useful for numerical investigations as well. In particular, some results in dimension N=2 are reported, namely exemplificative vortex profiles by varying charge and angular momentum, together with relevant trends for vortex frequency and energy-charge ratio. The stability problem for hylomorphic vortices is also addressed. In the absence of conclusive analytical results, vortex evolution is numerically investigated: the obtained results suggest that, contrarily to solitons with null angular momentum, vortex are unstable.
The global attraction is proved for the nonlinear 3D Klein-Gordon equation with a nonlinearity concentrated at one point. Our main result is the convergence of each finite energy solution to the manifold of all solitary waves as $ttopminfty$. This global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersion radiation. We justify this mechanism by the following strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time-spectrum in the spectral gap $[-m,m]$ and satisfies the original equation. Then the application of the Titchmarsh Convolution Theorem reduces the spectrum of each omega-limit trajectory to a single frequency $omegain[-m,m]$.
This article resolves some errors in the paper Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE 4 (2011) no. 3, 405-460. The errors are in the energy-critical cases in two and higher dimensions.
In this paper, we characterize a family of solitary waves for NLS with derivative (DNLS) by the structue analysis and the variational argument. Since (DNLS) doesnt enjoy the Galilean invariance any more, the structure analysis here is closely related with the nontrivial momentum and shows the equivalence of nontrivial solutions between the quasilinear and the semilinear equations. Firstly, for the subcritical parameters $4omega>c^2$ and the critical parameters $4omega=c^2, c>0$, we show the existence and uniqueness of the solitary waves for (DNLS), up to the phase rotation and spatial translation symmetries. Secondly, for the critical parameters $4omega=c^2, cleq 0$ and the supercritical parameters $4omega<c^2$, there is no nontrivial solitary wave for (DNLS). At last, we make use of the invariant sets, which is related to the variational characterization of the solitary wave, to obtain the global existence of solution for (DNLS) with initial data in the invariant set $mathcal{K}^+_{omega,c}subseteq H^1(R)$, with $4omega=c^2, c>0$ or $4omega>c^2$. On one hand, different with the scattering result for the $L^2$-critical NLS in cite{Dod:NLS_sct}, the scattering result of (DNLS) doesnt hold for initial data in $mathcal{K}^+_{omega,c}$ because of the existence of infinity many small solitary/traveling waves in $mathcal{K}^+_{omega,c},$ with $4omega=c^2, c>0$ or $4omega>c^2$. On the other hand, our global result improves the global result in cite{Wu-DNLS, Wu-DNLS2} (see Corollary ref{cor:gwp}).
We provide explicit formulas for the Green function of an elliptic PDE in the infinite strip and the half-plane. They are expressed in elementary and special functions. Proofs of uniqueness and existence are also given.