No Arabic abstract
Featured with a plethora of electric and magnetic Mie resonances, high index dielectric nanostructures offer a versatile platform to concentrate light-matter interactions at the nanoscale. By integrating unique features of far-field scattering control and near-field concentration from radiationless anapole states, here, we demonstrate a giant photothermal nonlinearity in single subwavelength-sized silicon nanodisks. The nanoscale energy concentration and consequent near-field enhancements mediated by the anapole mode yield a reversible nonlinear scattering with a large modulation depth and a broad dynamic range, unveiling a record-high nonlinear index change up to 0.5 at mild incident light intensities on the order of MW/cm2. The observed photothermal nonlinearity showcases three orders of magnitude enhancement compared with that of unstructured bulk silicon, as well as nearly one order of magnitude higher than that through the radiative electric dipolar mode. Such nonlinear scattering can empower distinctive point spread functions in confocal reflectance imaging, offering the potential for far-field localization of nanostructured Si with an accuracy approaching 40 nm. Our findings shed new light on active silicon photonics based on optical anapoles.
Second harmonic generation (SHG) with a material of large transparency is an attractive way of generating coherent light sources at exotic wavelength range such as VUV, UV and visible light. It is of critical importance to improve nonlinear conversion efficiency in order to find practical applications in quantum light source and high resolution nonlinear microscopy, etc. Here an enhanced SHG with conversion efficiency up to the order of 0.01% at SH wavelength of 282 nm under 11 GW/cm2 pump power via the excitation of anapole in lithium niobite (LiNbO3, or LN) nanodisk through the dominating d33 nonlinear coefficient is investigated. The anapole has advantages of strongly suppressing far-field scattering and well-confined internal field which helps to boost the nonlinear conversion. Anapoles in LN nanodisk is facilitated by high index contrast between LN and substrate with properties of near-zero-index via hyperbolic metamaterial structure design. By tailoring the multi-layers structure of hyperbolic metamaterials, the anapole excitation wavelength can be tuned at different wavelengths. It indicates that an enhanced SHG can be achieved at a wide range of pump light wavelengths via different design of the epsilon-near-zero (ENZ) hyperbolic metamaterials substrates. The proposed nanostructure in this work might hold significances for the enhanced light-matter interactions at the nanoscale such as integrated optics.
Second-order optical nonlinearities can be greatly enhanced by orders of magnitude in resonantly excited nanostructures, theoretically predicted and experimentally investigated in a variety of semiconductor systems. These resonant nonlinearities continually attract attention, particularly in newly discovered materials, but tend not to be as efficient as currently predicted. This limits their exploitation in frequency conversion. Here, we present a clear-cut theoretical and experimental demonstration that the second-order nonlinear susceptibility can vary by orders of magnitude as a result of giant cancellation effects in systems with many confined quantum states. Using terahertz quantum cascade lasers as a model source to investigate interband and intersubband resonant nonlinearities, we show that these giant cancellations are a result of interfering second-order nonlinear contributions of light and heavy hole states. As well as of importance to understand and engineer the resonant optical properties of materials, this work can be employed as a new, extremely sensitive tool to elucidate the bandstructure properties of complex quantum well systems.
We report the observation of second-harmonic generation in stoichiometric silicon nitride waveguides grown via low-pressure chemical vapour deposition. Quasi-rectangular waveguides with a large cross section were used, with a height of 1 {mu}m and various different widths, from 0.6 to 1.2 {mu}m, and with various lengths from 22 to 74 mm. Using a mode-locked laser delivering 6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the incoming power was coupled through the waveguide, making maximum average powers of up to 15 mW available in the waveguide. Second-harmonic output was observed with a delay of minutes to several hours after the initial turn-on of pump radiation, showing a fast growth rate between 10$^{-4}$ to 10$^{-2}$ s$^{-1}$, with the shortest delay and highest growth rate at the highest input power. After this first, initial build-up, the second-harmonic became generated instantly with each new turn-on of the pump laser power. Phase matching was found to be present independent of the used waveguide width, although the latter changes the fundamental and second-harmonic phase velocities. We address the presence of a second-order nonlinearity and phase matching, involving an initial, power-dependent build-up, to the coherent photogalvanic effect. The effect, via the third-order nonlinearity and multiphoton absorption leads to a spatially patterned charge separation, which generates a spatially periodic, semi-permanent, DC-field-induced second-order susceptibility with a period that is appropriate for quasi-phase matching. The maximum measured second-harmonic conversion efficiency amounts to 0.4% in a waveguide with 0.9 x 1 {mu}m$^2$ cross section and 36 mm length, corresponding to 53 {mu}W at 532 nm with 13 mW of IR input coupled into the waveguide. The according $chi^{(2)}$ amounts to 3.7 pm/V, as retrieved from the measured conversion efficiency.
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon-absorption induced Drude electron-hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with maximal Lyapunov exponent rate about 2.94 the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations, and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale.
We evaluate the nonlinear coefficient of graphene-on-silicon waveguides through the coincidence measurement of photon-pairs generated via spontaneous four-wave mixing. We observed the temporal correlation of the photon-pairs from the waveguides over various transfer layouts of graphene sheets. A simple analysis of the experimental results using coupled-wave equations revealed that the atomically-thin graphene sheets enhanced the nonlinearity of silicon waveguides up to ten-fold. The results indicate that the purely $chi^{(3)}$-based effective nonlinear refractive index of graphene is on the order of $10^{-13}$ m$^2$/W, and provide important insights for applications of graphene-based nonlinear optics in on-chip nanophotonics.