No Arabic abstract
We develop relativistic short-range exchange energy functionals for four-component relativistic range-separated density-functional theory using a Dirac-Coulomb Hamiltonian in the no-pair approximation. We show how to improve the short-range local-density approximation exchange functional for large range-separation parameters by using the on-top exchange pair density as a new variable. We also develop a relativistic short-range generalized-gradient approximation exchange functional which further increases the accuracy for small range-separation parameters. Tests on the helium, beryllium, neon, and argon isoelectronic series up to high nuclear charges show that this latter functional gives exchange energies with a maximal relative percentage error of 3 %. The development of this exchange functional represents a step forward for the application of four-component relativistic range-separated density-functional theory to chemical compounds with heavy elements.
We construct the complementary short-range correlation relativistic local-density-approximation functional to be used in relativistic range-separated density-functional theory based on a Dirac-Coulomb Hamiltonian in the no-pair approximation. For this, we perform relativistic random-phase-approximation calculations of the correlation energy of the relativistic homogeneous electron gas with a modified electron-electron interaction, we study the high-density behavior, and fit the results to a parametrized expression. The obtained functional should eventually be useful for electronic-structure calculations of strongly correlated systems containing heavy elements.
We introduce an approximation to the short-range correlation energy functional with multide-terminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density gradient, and the on-top pair density, which locally interpolates between the standard Perdew-Burke-Ernzerhof correlation functional at vanishing range-separation parameter and the known exact asymptotic expansion at large range-separation parameter. When combined with (selected) configuration-interaction calculations for the long-range wave function, this approximation gives accurate dissociation energy curves of the H2, Li2, and Be2 molecules, and thus appears as a promising way to accurately account for static correlation in range-separated density-functional theory.
In this work we explore the potential of a new data-driven approach to the design of exchange-correlation (XC) functionals. The approach, inspired by convolutional filters in computer vision and surrogate functions from optimization, utilizes convolutions of the electron density to form a feature space to represent local electronic environments and neural networks to map the features to the exchange-correlation energy density. These features are orbital free, and provide a systematic route to including information at various length scales. This work shows that convolutional descriptors are theoretically capable of an exact representation of the electron density, and proposes Maxwell-Cartesian spherical harmonic kernels as a class of rotationally invariant descriptors for the construction of machine-learned functionals. The approach is demonstrated using data from the B3LYP functional on a number of small-molecules containing C, H, O, and N along with a neural network regression model. The machine-learned functionals are compared to standard physical approximations and the accuracy is assessed for the absolute energy of each molecular system as well as formation energies. The results indicate that it is possible to reproduce B3LYP formation energies to within chemical accuracy using orbital-free descriptors with a spatial extent of 0.2 A. The findings provide empirical insight into the spatial range of electron exchange, and suggest that the combination of convolutional descriptors and machine-learning regression models is a promising new framework for XC functional design, although challenges remain in obtaining training data and generating models consistent with pseudopotentials.
We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. ($sim 235000$T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity these forms are found to be numerically stable and their accuracy at high field suggests the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order M{{o}}ller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.