No Arabic abstract
We construct the complementary short-range correlation relativistic local-density-approximation functional to be used in relativistic range-separated density-functional theory based on a Dirac-Coulomb Hamiltonian in the no-pair approximation. For this, we perform relativistic random-phase-approximation calculations of the correlation energy of the relativistic homogeneous electron gas with a modified electron-electron interaction, we study the high-density behavior, and fit the results to a parametrized expression. The obtained functional should eventually be useful for electronic-structure calculations of strongly correlated systems containing heavy elements.
We develop relativistic short-range exchange energy functionals for four-component relativistic range-separated density-functional theory using a Dirac-Coulomb Hamiltonian in the no-pair approximation. We show how to improve the short-range local-density approximation exchange functional for large range-separation parameters by using the on-top exchange pair density as a new variable. We also develop a relativistic short-range generalized-gradient approximation exchange functional which further increases the accuracy for small range-separation parameters. Tests on the helium, beryllium, neon, and argon isoelectronic series up to high nuclear charges show that this latter functional gives exchange energies with a maximal relative percentage error of 3 %. The development of this exchange functional represents a step forward for the application of four-component relativistic range-separated density-functional theory to chemical compounds with heavy elements.
We introduce an approximation to the short-range correlation energy functional with multide-terminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density gradient, and the on-top pair density, which locally interpolates between the standard Perdew-Burke-Ernzerhof correlation functional at vanishing range-separation parameter and the known exact asymptotic expansion at large range-separation parameter. When combined with (selected) configuration-interaction calculations for the long-range wave function, this approximation gives accurate dissociation energy curves of the H2, Li2, and Be2 molecules, and thus appears as a promising way to accurately account for static correlation in range-separated density-functional theory.
Plasma wake lens in which all short relativistic electron bunches of sequence are focused identically and uniformly is studied analytically and by numerical simulation. For two types of lenses necessary parameters of focused sequence of relativistic electron bunches are formulated. Verification of these parameters is performed by numerical simulation.
The inclusive electromagnetic responses in the quasi-elastic region are calculated with a model which considers the terms of the cluster expansion containinga single correlation line. The validity of this model is studied by comparing, in nuclear matter, its results with those of a complete calculation. Results in finite nuclei for both one-and two-nucleon emission are presented.
We explore an alternative to twist averaging in order to obtain more cost-effective and accurate extrapolations to the thermodynamic limit (TDL) for coupled cluster doubles (CCD) calculations. We seek a single twist angle to perform calculations at, instead of integrating over many random points or a grid. We introduce the concept of connectivity, a quantity derived from the non-zero four-index integrals in an MP2 calculation. This allows us to find a special twist angle that provides appropriate connectivity in the energy equation, and which yields results comparable to full twist averaging. This special twist angle effectively makes the finite electron number CCD calculation represent the TDL more accurately, reducing the cost of twist-averaged CCD over $N_mathrm{s}$ twist angles from $N_s$ CCD calculations to $N_s$ MP2 calculations plus one CCD calculation.