No Arabic abstract
Lithium is extensively known to be a good tracer of non-standard mixing processes occurring in stellar interiors. We present the results of a new large Lithium survey in red giant stars and combine it with surveys from the literature to probe the impact of rotation-induced mixing and thermohaline double-diffusive instability along stellar evolution. We determined the surface Li abundance for a sample of 829 giant stars with accurate Gaia parallaxes for a large sub-sample (810 stars) complemented with accurate Hipparcos parallaxes (19 stars). The spectra of our sample of northern and southern giant stars were obtained in three ground-based observatories (OHP, ESO-La Silla, Mc Donald). We determined the atmospheric parameters (Teff, log(g), [Fe/H]), and the Li abundance. We used Gaia parallaxes and photometry to determine the luminosity of our objects and we estimated the mass and evolution status of each sample star with a maximum-likelihood technique using stellar evolution models computed with the STAREVOL code. We compared the observed Li behaviour with predictions from stellar models, including rotation and thermohaline mixing. The same approach was used for stars from selected Li surveys from the literature. Rotation-induced mixing accounts nicely for the lithium behaviour in stars warmer than about 4200K, independently of the mass domain. For stars with masses lower than 2Msun thermohaline mixing leads to further Li depletion below the Teff of the RGB bump (about 4000K), and on the early AGB, as observed. Depending on the definition we adopt, we find between 0.8 and 2.2% of Li-rich giants in our new sample. Gaia puts a new spin on the understanding of mixing processes in stars, and our study confirms the importance of rotation-induced processes and of thermohaline mixing. However asteroseismology is required to definitively pinpoint the actual evolution status of Li-rich giants.
According to standard stellar evolution, lithium is destroyed throughout most of the evolution of low- to intermediate-mass stars. However, a number of evolved stars on the red giant branch (RGB) and the asymptotic giant branch (AGB) are known to contain a considerable amount of Li, whose origin is not always understood well. Here we present the latest development on the observational side to obtain a better understanding of Li-rich K giants (RGB), moderately Li-rich low-mass stars on the AGB, as well as very Li-rich intermediate-mass AGB stars possibly undergoing the standard hot bottom burning phase. These last ones probably also enrich the interstellar medium with freshly produced Li.
It has recently been suggested that all giant stars with mass below 2 $M_{odot}$ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). We test if the above result can be confirmed in a sample of RC and RGB stars that are members of open clusters. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 $M_{odot}$). These observations are compared with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. In six clusters, we find about 35% RC stars with Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation was for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that the possible Li production is ubiquitous. For about 65% RC giants we can only determine abundance upper limits that could be hiding very low Li abundances. Our results indicate a possible production of Li during the RC, at levels that would not classify the stars as Li rich. Determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models with an additional mixing episode close to the He flash.
The unparalleled photometric data obtained by NASAs Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.
We present results from the analysis of 401 RR Lyrae stars (RRLs) belonging to the field of the Milky Way (MW). For a fraction of them multi-band ($V$, $K_{rm s}$, $W1$) photometry, metal abundances, extinction values and pulsation periods are available in the literature and accurate trigonometric parallaxes measured by the Gaia mission alongside Gaia $G$-band time-series photometry have become available with the Gaia second data release (DR2) on 2018 April 25. Using a Bayesian fitting approach we derive new near-, mid-infrared period-absolute magnitude-metallicity ($PMZ$) relations and new absolute magnitude-metallicity relations in the visual ($M_V - {rm [Fe/H]}$) and $G$ bands ($M_G - {rm [Fe/H]}$), based on the Gaia DR2 parallaxes. We find the dependence of luminosity on metallicity to be higher than usually found in the literature, irrespective of the passband considered. Running the adopted Bayesian model on a simulated dataset we show that the high metallicity dependence is not caused by the method, but likely arises from the actual distribution of the data and the presence of a zero-point offset in the Gaia parallaxes. We infer a zero-point offset of $-0.057$ mas, with the Gaia DR2 parallaxes being systematically smaller. We find the RR Lyrae absolute magnitude in the $V$, $G$, $K_{rm s}$ and $W1$ bands at metallicity of [Fe/H]=$-1.5$ dex and period of P = 0.5238 days, based on Gaia DR2 parallaxes to be $M_V = 0.66pm0.06$ mag, $M_G = 0.63pm0.08$ mag, $M_{K_{rm s}} = -0.37pm0.11$ mag and $M_{W1} = -0.41pm0.11$ mag, respectively.
We present Li, Na, Al and Fe abundances of 199 lower red giant branch stars members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ~ 1 dex with a prominent tail toward lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ~ 1 dex are found at metallicities lower than [Fe/H] ~ -1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all the metallicities. The most metal-poor stars exhibit a clear Li-Na anticorrelation, with about 30% of the sample with A(Li) lower than ~ 0.8 dex, while in normal globular clusters these stars represent a small fraction. Most of the stars with [Fe/H] > -1.6 dex are Li-poor and Na-rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs.