Do you want to publish a course? Click here

Constraining stellar physics from red-giant stars in binaries - stellar rotation, mixing processes and stellar activity

107   0   0.0 ( 0 )
 Added by Paul Beck
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The unparalleled photometric data obtained by NASAs Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.



rate research

Read More

In the fourth paper of this series, we present the metallicity-dependent Sloan Digital Sky Survey (SDSS) stellar color loci of red giant stars, using a spectroscopic sample of red giants in the SDSS Stripe 82 region. The stars span a range of 0.55 -- 1.2 mag in color g-i, -0.3 -- -2.5 in metallicity [Fe/H], and have values of surface gravity log g smaller than 3.5 dex. As in the case of main-sequence (MS) stars, the intrinsic widths of loci of red giants are also found to be quite narrow, a few mmag at maximum. There are however systematic differences between the metallicity-dependent stellar loci of red giants and MS stars. The colors of red giants are less sensitive to metallicity than those of MS stars. With good photometry, photometric metallicities of red giants can be reliably determined by fitting the u-g, g-r, r-i, and i-z colors simultaneously to an accuracy of 0.2 -- 0.25 dex, comparable to the precision achievable with low-resolution spectroscopy for a signal-to-noise ratio of 10. By comparing fitting results to the stellar loci of red giants and MS stars, we propose a new technique to discriminate between red giants and MS stars based on the SDSS photometry. The technique achieves completeness of ~ 70 per cent and efficiency of ~ 80 per cent in selecting metal-poor red giant stars of [Fe/H] $le$ -1.2. It thus provides an important tool to probe the structure and assemblage history of the Galactic halo using red giant stars.
We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA Star. Improvements in MESA Stars ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA Star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA Star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 Msun stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA Star solves the fully coupled stellar structure and composition equations, and we show how this has improved MESAs performance scaling on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit (SDK) that packages all the required components needed to form a unified and maintained build environment for MESA. [Abridged]
We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae (LRNe). They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC4490-2011OT1, M101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, Halpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (~6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. Halpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for LRNe. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between LRNe and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed.
300 - Nicolas Lodieu 2020
We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and globular clusters identified by ground-based surveys and space missions with high-resolution spectroscopic follow-up. These discoveries provide benchmark systems with known distances, metallicities, and ages to calibrate masses and radii predicted by state-of-the-art evolutionary models to a few percent. We report their density and discuss current limitations on the accuracy of the physical parameters. We discuss future opportunities and highlight future guidelines to fill gaps in age and metallicity to improve further our knowledge of low-mass stars and brown dwarfs.
154 - David M. Nataf 2014
We compare model predictions to observations of star counts in the red giant branch bump (RGBB) relative to the number density of first-ascent red giant branch at the magnitude of the RGBB, $EW_{RGBB}$. The predictions are shown to exceed the data by $(5.2 pm 4.3)$% for the BaSTI models and by $(17.1 pm 4.3)$% for the Dartmouth models, where the listed errors are purely statistical. These two offsets are brought to zero if the Galactic globular cluster metallicity scale is assumed to be overestimated by a linear shift of $sim 0.11$ dex and $sim 0.36$ dex respectively. This inference based on RGBB star counts goes in the opposite direction to the increase in metallicities of ${Delta}$[M/H]$approx$0.20 dex that would be required to fix the offset between predicted and observed RGBB luminosities. This comparison is a constraint on deep mixing models of stellar interiors, which predict decreased rather than increased RGBB star counts. We tabulate the predictions for RGBB star counts as a function of [Fe/H], [$alpha$/Fe], CNONa, initial helium abundance, and age. Though our study suggests a small zero-point calibration issue, RGBB star counts should nonetheless be an actionable parameter with which to constrain stellar populations in the differential sense. The most significant outliers are toward the clusters NGC 5025 (M53), NGC 6723, and NGC 7089 (M2), each of which shows a $sim 2 sigma$ deficit in their RGBB star counts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا