No Arabic abstract
A critical goal, is that organizations and citizens can easily access the geographic information required for good governance. However, despite the costly efforts of governments to create and implement Spatial Data Infrastructures (SDIs), this goal is far from being achieved. This is partly due to the lack of usability of the geoportals through which the geographic information is accessed. In this position paper, we present IDEAIS, a research network composed of multiple Ibero-American partners to address this usability issue through the use of Intelligent Systems, in particular Smart Voice Assistants, to efficiently recover and access geographic information.
In this paper we present the results of an exploratory study examining the potential of voice assistants (VA) for some groups of older adults in the context of Smart Home Technology (SHT). To research the aspect of older adults interaction with voice user interfaces (VUI) we organized two workshops and gathered insights concerning possible benefits and barriers to the use of VA combined with SHT by older adults. Apart from evaluating the participants interaction with the devices during the two workshops we also discuss some improvements to the VA interaction paradigm.
Voice assistants have recently achieved remarkable commercial success. However, the current generation of these devices is typically capable of only reactive interactions. In other words, interactions have to be initiated by the user, which somewhat limits their usability and user experience. We propose, that the next generation of such devices should be able to proactively provide the right information in the right way at the right time, without being prompted by the user. However, achieving this is not straightforward, since there is the danger it could interrupt what the user is doing too much, resulting in it being distracting or even annoying. Furthermore, it could unwittingly, reveal sensitive/private information to third parties. In this report, we discuss the challenges of developing proactively initiated interactions, and suggest a framework for when it is appropriate for the device to intervene. To validate our design assumptions, we describe firstly, how we built a functioning prototype and secondly, a user study that was conducted to assess users reactions and reflections when in the presence of a proactive voice assistant. This pre-print summarises the state, ideas and progress towards a proactive device as of autumn 2018.
We present a dialogue elicitation study to assess how users envision conversations with a perfect voice assistant (VA). In an online survey, N=205 participants were prompted with everyday scenarios, and wrote the lines of both user and VA in dialogues that they imagined as perfect. We analysed the dialogues with text analytics and qualitative analysis, including number of words and turns, social aspects of conversation, implied VA capabilities, and the influence of user personality. The majority envisioned dialogues with a VA that is interactive and not purely functional; it is smart, proactive, and has knowledge about the user. Attitudes diverged regarding the assistants role as well as it expressing humour and opinions. An exploratory analysis suggested a relationship with personality for these aspects, but correlations were low overall. We discuss implications for research and design of future VAs, underlining the vision of enabling conversational UIs, rather than single command Q&As.
Data credibility is a crucial issue in mobile crowd sensing (MCS) and, more generally, people-centric Internet of Things (IoT). Prior work takes approaches such as incentive mechanism design and data mining to address this issue, while overlooking the power of crowds itself, which we exploit in this paper. In particular, we propose a cross validation approach which seeks a validating crowd to verify the data credibility of the original sensing crowd, and uses the verification result to reshape the original sensing dataset into a more credible posterior belief of the ground truth. Following this approach, we design a specific cross validation mechanism, which integrates four sampling techniques with a privacy-aware competency-adaptive push (PACAP) algorithm and is applicable to time-sensitive and quality-critical MCS applications. It does not require redesigning a new MCS system but rather functions as a lightweight plug-in, making it easier for practical adoption. Our results demonstrate that the proposed mechanism substantially improves data credibility in terms of both reinforcing obscure truths and scavenging hidden truths.
With the outlook of improving communication and social abilities of people with ASD, we propose to extend the paradigm of robot-based imitation games to ASD teenagers. In this paper, we present an interaction scenario adapted to ASD teenagers, propose a computational architecture using the latest machine learning algorithm Openpose for human pose detection, and present the results of our basic testing of the scenario with human caregivers. These results are preliminary due to the number of session (1) and participants (4). They include a technical assessment of the performance of Openpose, as well as a preliminary user study to confirm our game scenario could elicit the expected response from subjects.