Do you want to publish a course? Click here

Resonantly Interacting Fermi-Fermi Mixture of $^{161}$Dy and $^{40}$K

69   0   0.0 ( 0 )
 Added by Rudolf Grimm
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the realization of a Fermi-Fermi mixture of ultracold atoms that combines mass imbalance, tunability, and collisional stability. In an optically trapped sample of $^{161}$Dy and $^{40}$K, we identify a broad Feshbach resonance centered at a magnetic field of $217,$G. Hydrodynamic expansion profiles in the resonant interaction regime reveal a bimodal behavior resulting from mass imbalance. Lifetime studies on resonance show a suppression of inelastic few-body processes by orders of magnitude, which we interpret as a consequence of the fermionic nature of our system. The resonant mixture opens up intriguing perspectives for studies on novel states of strongly correlated fermions with mass imbalance.



rate research

Read More

We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of $^6$Li and $^{40}$K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our $^6$Li-$^{40}$K system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.
We report on the expansion of a Fermi-Fermi mixture of Li-6 and K-40 atoms under conditions of strong interactions realized near the center of an interspecies Feshbach resonance. We observe two different phenomena of hydrodynamic behavior. The first one is the well-known inversion of the aspect ratio. The second one is a collective expansion, where both species stick together and despite of their different masses expand jointly. Our work constitutes a first step to explore the intriguing many-body physics of this novel system.
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC respectively, we show that the single particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, these prominent effects can be used to systematically probe the strongly interacting Fermi gas.
139 - Yuzhu Jiang , Ran Qi , Zhe-Yu Shi 2016
In this letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to different vortex core structure of the Fermi superfluid in the BCS regime and in the BEC regime. In the former the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out at the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, the two sets of vortex lattices interact stronger in the BEC regime that yields the structure transition of vortex lattices. In view of recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in near future.
Ultracold atomic Fermi gases present an opportunity to study strongly interacting Fermi systems in a controlled and uncomplicated setting. The ability to tune attractive interactions has led to the discovery of superfluidity in these systems with an extremely high transition temperature, near T/T_F = 0.2. This superfluidity is the electrically neutral analog of superconductivity; however, superfluidity in atomic Fermi gases occurs in the limit of strong interactions and defies a conventional BCS description. For these strong interactions, it is predicted that the onset of pairing and superfluidity can occur at different temperatures. This gives rise to a pseudogap region where, for a range of temperatures, the system retains some of the characteristics of the superfluid phase, such as a BCS-like dispersion and a partially gapped density of states, but does not exhibit superfluidity. By making two independent measurements: the direct observation of pair condensation in momentum space and a measurement of the single-particle spectral function using an analog to photoemission spectroscopy, we directly probe the pseudogap phase. Our measurements reveal a BCS-like dispersion with back-bending near the Fermi wave vector k_F that persists well above the transition temperature for pair condensation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا