No Arabic abstract
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC respectively, we show that the single particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, these prominent effects can be used to systematically probe the strongly interacting Fermi gas.
In this letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to different vortex core structure of the Fermi superfluid in the BCS regime and in the BEC regime. In the former the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out at the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, the two sets of vortex lattices interact stronger in the BEC regime that yields the structure transition of vortex lattices. In view of recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in near future.
Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of $p$-wave pairing between spin polarised fermions immersed in a Bose-Einstein condensate. The fermions interact via the exchange of phonons in the condensate, and our self-consistent theory takes into account the full frequency/momentum dependence of the resulting induced interaction. We demonstrate that both retardation and self-energy effects are important for obtaining a reliable value of the critical temperature. Focusing on experimentally relevant systems, we perform a systematic analysis varying the boson-boson and boson-fermion interaction strength as well as their masses, and identify the most suitable system for realising a $p$-wave superfluid. Our results show that such a superfluid indeed is experimentally within reach using light bosons mixed with heavy fermions.
The recent experimental realization of Bose-Fermi superfluid mixtures of dilute ultracold atomic gases has opened new perspectives in the study of quantum many-body systems. Depending on the values of the scattering lengths and the amount of bosons and fermions, a uniform Bose-Fermi mixture is predicted to exhibit a fully mixed phase, a fully separated phase or, in addition, a purely fermionic phase coexisting with a mixed phase. The occurrence of this intermediate configuration has interesting consequences when the system is nonuniform. In this work we theoretically investigate the case of solitonic solutions of coupled Bogoliubov-de Gennes and Gross-Pitaevskii equations for the fermionic and bosonic components, respectively. We show that, in the partially separated phase, a dark soliton in Fermi superfluid is accompanied by a broad bosonic component in the soliton, forming a dark-bright soliton which keeps full spatial coherence.
We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the perturbative regime, we find that the conversion efficiency depends linearly on the density overlap of the two gases, with a slope that matches a parameter-free model that uses only the atom masses and the known Feshbach resonance parameters. In the saturated regime, we find that the maximum number of Feshbach molecules depends on the atoms phase-space density. At higher temperatures, our measurements agree with a phenomenological model that successfully describes the formation of bosonic molecules from either Bose or Fermi gases. However, for quantum degenerate atom gas mixtures, we measure significantly fewer molecules than this model predicts.
We report on the realization of a Fermi-Fermi mixture of ultracold atoms that combines mass imbalance, tunability, and collisional stability. In an optically trapped sample of $^{161}$Dy and $^{40}$K, we identify a broad Feshbach resonance centered at a magnetic field of $217,$G. Hydrodynamic expansion profiles in the resonant interaction regime reveal a bimodal behavior resulting from mass imbalance. Lifetime studies on resonance show a suppression of inelastic few-body processes by orders of magnitude, which we interpret as a consequence of the fermionic nature of our system. The resonant mixture opens up intriguing perspectives for studies on novel states of strongly correlated fermions with mass imbalance.