No Arabic abstract
Equilibrium molecular dynamics simulations are used to calculate the thermal conductivity of the one component plasma (OCP) via the Green-Kubo formalism over a broad range of Coulomb coupling strength, $0.1leGammale180$. These simulations address previous discrepancies between computations using equilibrium versus nonequilibrium methods. Analysis of heat flux autocorrelation functions show that very long ($6times10^5omega_p^{-1}$) time series are needed to reduce the noise level to allow $lesssim2%$ accuracy. The new simulations provide the first accurate data for $Gamma lesssim 1$. This enables a test of the traditional Landau-Spitzer theory, which is found to agree with the simulations for $Gamma lesssim 0.3$. It also enables tests of theories to address moderate and strong Coulomb coupling. Two are found to provide accurate extensions to the moderate coupling regime of $Gamma lesssim 10$, but none are accurate in the $Gamma gtrsim 10$ regime where potential energy transport and coupling between mass flow and stress dominate thermal conduction.
The Yukawa one-component plasma (OCP) is a paradigm model for describing plasmas that contain one component of interest and one or more other components that can be treated as a neutralizing, screening background. In appropriately scaled units, interactions are characterized entirely by a screening parameter, $kappa$. As a result, systems of similar $kappa$ show the same dynamics, regardless of the underlying parameters (e.g., density and temperature). We demonstrate this behavior using ultracold neutral plasmas (UNP) created by photoionizing a cold ($Tle10$ mK) gas. The ions in UNP systems are well described by the Yukawa model, with the electrons providing the screening. Creation of the plasma through photoionization can be thought of as a rapid quench from $kappa_{0}=infty$ to a final $kappa$ value set by the electron density and temperature. We demonstrate experimentally that the post-quench dynamics are universal in $kappa$ over a factor of 30 in density and an order of magnitude in temperature. Results are compared with molecular dynamics simulations. We also demonstrate that features of the post-quench kinetic energy evolution, such as disorder-induced heating and kinetic-energy oscillations, can be used to determine the plasma density and the electron temperature.
Single layer molybdenum disulfide (SLMoS2), a semiconductor possesses intrinsic bandgap and high electron mobility, has attracted great attention due to its unique electronic, optical, mechanical and thermal properties. Although thermal conductivity of SLMoS2 has been widely investigated recently, less studies focus on molybdenum disulfide nanotube (MoS2NT). Here, the comprehensive temperature, size and strain effect on thermal conductivity of MoS2NT are investigated. A chirality-dependent strain effect is identified in thermal conductivity of zigzag nanotube, in which the phonon group velocity can be significantly reduced by strain. Besides, results show that thermal conductivity has a ~T-1 and a ~Lb{eta} relation with temperature from 200 to 400 K and length from 10 to 320 nm, respectively. This work not only provides feasible strategies to modulate the thermal conductivity of MoS2NT, but also offers useful insights into the fundamental mechanisms that govern the thermal conductivity, which can be used for the thermal management of low dimensional materials in optical, electronic and thermoelectrical devices. Introduction.
The non-equilibrium Greens function (NEGF) method with Buttiker probe scattering self-energies is assessed by comparing its predictions for the thermal boundary resistance with molecular dynamics (MD) simulations. For simplicity, the interface of Si/heavy-Si is considered, where heavy-Si differs from Si only in the mass value. With Buttiker probe scattering parameters tuned against MD in homogeneous Si, the NEGF-predicted thermal boundary resistance quantitatively agrees with MD for wide mass ratios. Artificial resistances that the unaltered Landauer approach yield at virtual interfaces in homogeneous systems are absent in the present NEGF approach. Spectral information result from NEGF in its natural representation without further transformations. The spectral results show that the scattering between different phonon modes plays a crucial role in thermal transport across interfaces. Buttiker probes provide an efficient and reliable way to include anharmonicity in phonon related NEGF. NEGF including the Buttiker probes can reliably predict phonon transport across interfaces and at finite temperatures.
The present study addresses the role of molecular non-equilibrium effects in thermal ignition problems. We consider a single binary reaction of the form A+B -> C+C. Molecular dynamics calculations were performed for activation energies ranging between RT and 7.5RT and heat release of 2.5RT and 10RT. The evolution of up to 10,000 particles was calculated as the system undergoes a thermal ignition at constant volume. Ensemble averages of 100 calculations for each parameter set permitted to determine the ignition delay, along with a measure of the stochasticity of the process. A well behaved convergence to large system sizes is also demonstrated. The ignition delay calculations were compared with those obtained at the continuum level using rates derived from kinetic theory: the standard rate assuming that the distribution of the speed of the particles is the Maxwell-Boltzmann distribution, and the perturbed rates by Prigogine and Xhrouet [1] for an isothermal system, and Prigogine and Mahieu [2] for an energy releasing reaction, obtained by the Chapman-Enskog perturbation procedure. The molecular results were found in very good agreement with the latter at low temperatures, confirming that non-equilibrium effects promote the formation of energetic particles, that serve as seeds for subsequent reaction events: i.e., hot spots. This effect was found to lower the ignition delay by up to 30%. At high temperatures, the ignition delay obtained from the standard equilibrium rate was found to be up to 60% longer than the molecular calculations. This effect is due to the rapidity of the reactive collisions that do not allow the system to equilibrate. For this regime, none of the perturbation solutions obtained by the Chapman-Enskog procedure were valid. This study thus shows the importance of non-equilibrium effects in thermal ignition problems, for most temperatures of practical interest.
Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (eOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wavenumber but merges with the OCP at high wavenumber. Additionally, the eOCP reproduces the overall relaxation timescales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of eOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.