No Arabic abstract
Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (eOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wavenumber but merges with the OCP at high wavenumber. Additionally, the eOCP reproduces the overall relaxation timescales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of eOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.
This work is to continue the development of the general model, Multi-Average Ion Collisional-Radiative Model (MAICRM), to calculate the plasma spectral properties of hot dense plasmas. In this model, an average ion is used to characterize the average orbital occupations and the total populations of the configurations within a single charge state. The orbital occupations and population of the average ion are obtained by solving two sets of rate equations sequentially and iteratively. The calculated spectra of Xe and Au plasmas under different plasma conditions are in good agreement with the DCA/SCA calculations while the computational cost is much lower.
The Yukawa one-component plasma (OCP) is a paradigm model for describing plasmas that contain one component of interest and one or more other components that can be treated as a neutralizing, screening background. In appropriately scaled units, interactions are characterized entirely by a screening parameter, $kappa$. As a result, systems of similar $kappa$ show the same dynamics, regardless of the underlying parameters (e.g., density and temperature). We demonstrate this behavior using ultracold neutral plasmas (UNP) created by photoionizing a cold ($Tle10$ mK) gas. The ions in UNP systems are well described by the Yukawa model, with the electrons providing the screening. Creation of the plasma through photoionization can be thought of as a rapid quench from $kappa_{0}=infty$ to a final $kappa$ value set by the electron density and temperature. We demonstrate experimentally that the post-quench dynamics are universal in $kappa$ over a factor of 30 in density and an order of magnitude in temperature. Results are compared with molecular dynamics simulations. We also demonstrate that features of the post-quench kinetic energy evolution, such as disorder-induced heating and kinetic-energy oscillations, can be used to determine the plasma density and the electron temperature.
In a previous paper we showed that dynamical density shocks occur in the non-relativistic expansion of dense single component plasmas relevant to ultrafast electron microscopy; and we showed that fluid models capture these effects accurately. We show that the non-relativistic decoupling of the relative and center of mass motions ceases to apply and this coupling leads to novel behavior in the relativistic dynamics under planar, cylindrical, and spherical symmetries. In cases where the relative motion of the bunch is relativistic, we show that a dynamical shock emerges even in the case of a uniform bunch with cold initial conditions; and that density shocks are in general enhanced when the relative motion becomes relativistic. Furthermore, we examine the effect of an extraction field on the relativistic dynamics of a planar symmetric bunch.
String theoretical arguments led to the hypothesis that the ratio of viscosity to entropy of any physical system has a lower bound. Strongly coupled systems usually have a small viscosity compared to weakly coupled plasmas in which the viscosity is proportional to the mean free path. In the case of a one-component plasma the viscosity as a function of the coupling strength shows a minimum. Here we show that the ratio of viscosity to entropy of a strongly coupled one-component plasma is always above the lower bound predicted by string theory.
We present a one-dimensional model which gives a novel physical interpretation to the specific state of an ensemble of electrons continuously injected into an electrostatic potential well immersed in a strong applied magnetic field preventing radial expansion. When the space-charge field of the electrons accumulated in the potential well compensates the external electrostatic field, a force-free steady-state of the electron cloud forms. This state of equilibrium is known in another context as a squeezed state of an electron beam. It is shown that the spatial distribution of the electron number density in this steady-state correlates with the shape of the potential well. Perturbations of the steady-state propagate along the electron cloud in the form of Trivelpiece-Gould modes.