Do you want to publish a course? Click here

Thermal conductivity of molybdenum disulfide nanotube from molecular dynamics simulations

129   0   0.0 ( 0 )
 Added by Han Meng
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single layer molybdenum disulfide (SLMoS2), a semiconductor possesses intrinsic bandgap and high electron mobility, has attracted great attention due to its unique electronic, optical, mechanical and thermal properties. Although thermal conductivity of SLMoS2 has been widely investigated recently, less studies focus on molybdenum disulfide nanotube (MoS2NT). Here, the comprehensive temperature, size and strain effect on thermal conductivity of MoS2NT are investigated. A chirality-dependent strain effect is identified in thermal conductivity of zigzag nanotube, in which the phonon group velocity can be significantly reduced by strain. Besides, results show that thermal conductivity has a ~T-1 and a ~Lb{eta} relation with temperature from 200 to 400 K and length from 10 to 320 nm, respectively. This work not only provides feasible strategies to modulate the thermal conductivity of MoS2NT, but also offers useful insights into the fundamental mechanisms that govern the thermal conductivity, which can be used for the thermal management of low dimensional materials in optical, electronic and thermoelectrical devices. Introduction.



rate research

Read More

We have extended our recent molecular-dynamic simulations of memristors to include the effect of thermal inhomogeneities on mobile ionic species appearing during operation of the device. Simulations show a competition between an attractive short-ranged interaction between oxygen vacancies and an enhanced local temperature in creating/destroying the conducting oxygen channels. Such a competition would strongly affect the performance of the memristive devices.
Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) are generating significant excitement due to their unique electronic, chemical, and optical properties. Covalent chemical functionalization represents a critical tool for tuning the properties of TMDCs for use in many applications. However, the chemical inertness of semiconducting TMDCs has thus far hindered the robust chemical functionalization of these materials. Previous reports have required harsh chemical treatments or converting TMDCs into metallic phases prior to covalent attachment. Here, we demonstrate the direct covalent functionalization of the basal planes of unmodified semiconducting MoS2 using aryl diazonium salts without any pretreatments. Our approach preserves the semiconducting properties of MoS2, results in covalent C-S bonds, is applicable to MoS2 derived from a range of different synthesis methods, and enables a range of different functional groups to be tethered directly to the MoS2 surface. Using density functional theory calculations including van der Waals interactions and atomic-scale scanning probe microscopy studies, we demonstrate a novel reaction mechanism in which cooperative interactions enable the functionalization to propagate along the MoS2 basal plane. The flexibility of this covalent chemistry employing the diverse aryl diazonium salt family is further exploited to tether active proteins to MoS2, suggesting future biological applications and demonstrating its use as a versatile and powerful chemical platform for enhancing the utility of semiconducting TMDCs
Van der Waals (vdW) heterostructures constructed with two-dimensional (2D) materials have attracted great interests, due to their fascinating properties and potential for novel applications. While earlier efforts have advanced the understanding of the ultrafast cross-layer charge transfer process in 2D heterostructures, mechanisms for the interfacial photocarrier recombination remain, to a large extent, unclear. Here, we investigate a heterostructure comprised of black phosphorus (BP) and molybdenum disulfide (MoS2), with a type-II band alignment. Interestingly, it is found that the photo-generated electrons in MoS2 (transferred from BP) exhibit an ultrafast lifetime of about 5 ps, significantly shorter than those of the constituent materials. By corroborating with the relaxation of photo-excited holes in BP, it is revealed that the ultrafast time constant is as a result of efficient Langevin recombination, where the high hole mobility of BP facilitates a large recombination coefficient (approximately 2x10^-10 m^2/s). In addition, broadband transient absorption spectroscopy confirms that the hot electrons transferred to MoS2 distribute over a broad energy range following an ultrafast thermalization. The rate of the interlayer Langevin recombination is found to exhibit no energy level dependence. Our findings provide essential insights into the fundamental photo-physics in type-II 2D heterostructures, and also provide useful guidelines for customizing photocarrier lifetimes of BP for high-speed photo-sensitive devices.
Graphene and single-wall carbon nanotube (SWCNT) have attracted great attention because of their ultra-high thermal conductivity. However, there are few works exploring the relations of their thermal conductivity quantitatively. The carbon nanocone (CNC) is a graded structure fall in between graphene disk (GD) and SWCNT. We perform non-equilibrium molecular dynamics (NEMD) simulation to study the thermal conductivity of CNC with different apex angles, and then compare them with that of GD and SWCNT. Our results show that, different from the homogeneous thermal conductivity in SWCNT, the CNC also has a natural graded thermal conductivity which is similar to the GD. Unexpectedly, the graded rate keeps almost the same when the apex angle decreases from 180{deg} (GD) to 19{deg}, but then suddenly declines to zero when the apex angle decreases from 19{deg} to 0{deg} (SWCNT). What is more interesting, the graded effect is not diminished when the interatomic force constant is weakened and mean free path is shorten. That is, besides nanoscale, the graded effect can be observed in macroscale graphene or CNC structures.
136 - Y. Shimazu , K. Arai , T. Iwabuchi 2017
The interface between two-dimensional semiconductors and metal contacts is an important topic of research of nanoelectronic devices based on two-dimensional semiconducting materials such as molybdenum disulfide (MoS2). We report transport properties of thin MoS2 flakes in a field-effect transistor geometry with Ti/Au and Al contacts. In contrast to widely used Ti/Au contacts, the conductance of flakes with Al contacts exhibits a smaller gate-voltage dependence, which is consistent with a substantial electron doping effect of the Al contacts. The temperature dependence of two-terminal conductance for the Al contacts is also considerably smaller than for the Ti/Au contacts, in which thermionic emission and thermally assisted tunneling play a dominant role. This result is explained in terms of the assumption that the carrier injection mechanism at an Al contact is dominated by tunneling that is not thermally activated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا