Do you want to publish a course? Click here

Binomial edge ideals of cographs

128   0   0.0 ( 0 )
 Added by Thomas Kahle
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We determine the Castelnuovo-Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with $n$ vertices the maximum regularity grows as $2n/3$. We also bound the regularity by graph theoretic invariants and construct a family of counterexamples to a conjecture of Hibi and Matsuda.



rate research

Read More

Let $J_G$ be the binomial edge ideal of a graph $G$. We characterize all graphs whose binomial edge ideals, as well as their initial ideals, have regularity $3$. Consequently we characterize all graphs $G$ such that $J_G$ is extremal Gorenstein. Indeed, these characterizations are consequences of an explicit formula we obtain for the regularity of the binomial edge ideal of the join product of two graphs. Finally, by using our regularity formula, we discuss some open problems in the literature. In particular we disprove a conjecture in cite{CDI} on the regularity of weakly closed graphs.
In this paper we prove the conjectured upper bound for Castelnuovo-Mumford regularity of binomial edge ideals posed in [23], in the case of chordal graphs. Indeed, we show that the regularity of any chordal graph G is bounded above by the number of maximal cliques of G, denoted by c(G). Moreover, we classify all chordal graphs G for which L(G) = c(G), where L(G) is the sum of the lengths of longest induced paths of connected components of G. We call such graphs strongly interval graphs. Moreover, we show that the regularity of a strongly interval graph G coincides with L(G) as well as c(G).
179 - Johannes Rauh 2012
This paper studies a class of binomial ideals associated to graphs with finite vertex sets. They generalize the binomial edge ideals, and they arise in the study of conditional independence ideals. A Grobner basis can be computed by studying paths in the graph. Since these Grobner bases are square-free, generalized binomial edge ideals are radical. To find the primary decomposition a combinatorial problem involving the connected components of subgraphs has to be solved. The irreducible components of the solution variety are all rational.
Building on coprincipal mesoprimary decomposition [Kahle and Miller, 2014], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decompositions that are direct combinatorial analogues of binomial irreducible decompositions, and for binomial ideals we construct decompositions into ideals that are as irreducible as possible while remaining binomial. We provide an example of a binomial ideal that is not an intersection of binomial irreducible ideals, thus answering a question of Eisenbud and Sturmfels [1996].
In this paper we introduce the concept of clique disjoint edge sets in graphs. Then, for a graph $G$, we define the invariant $eta(G)$ as the maximum size of a clique disjoint edge set in $G$. We show that the regularity of the binomial edge ideal of $G$ is bounded above by $eta(G)$. This, in particular, settles a conjecture on the regularity of binomial edge ideals in full generality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا