Do you want to publish a course? Click here

Generalized Binomial Edge Ideals

180   0   0.0 ( 0 )
 Added by Johannes Rauh
 Publication date 2012
  fields
and research's language is English
 Authors Johannes Rauh




Ask ChatGPT about the research

This paper studies a class of binomial ideals associated to graphs with finite vertex sets. They generalize the binomial edge ideals, and they arise in the study of conditional independence ideals. A Grobner basis can be computed by studying paths in the graph. Since these Grobner bases are square-free, generalized binomial edge ideals are radical. To find the primary decomposition a combinatorial problem involving the connected components of subgraphs has to be solved. The irreducible components of the solution variety are all rational.



rate research

Read More

133 - Arvind Kumar 2019
We classify generalized block graphs whose binomial edge ideals admit a unique extremal Betti number. We prove that the Castelnuovo-Mumford regularity of binomial edge ideals of generalized block graphs is bounded below by $m(G)+1$, where $m(G)$ is the number of minimal cut sets of the graph $G$ and obtain an improved upper bound for the regularity in terms of the number of maximal cliques and pendant vertices of $G$.
We determine the Castelnuovo-Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with $n$ vertices the maximum regularity grows as $2n/3$. We also bound the regularity by graph theoretic invariants and construct a family of counterexamples to a conjecture of Hibi and Matsuda.
105 - Rajib Sarkar 2019
Let $G$ be a connected simple graph on the vertex set $[n]$. Banerjee-Betancourt proved that $depth(S/J_G)leq n+1$. In this article, we prove that if $G$ is a unicyclic graph, then the depth of $S/J_G$ is bounded below by $n$. Also, we characterize $G$ with $depth(S/J_G)=n$ and $depth(S/J_G)=n+1$. We then compute one of the distinguished extremal Betti numbers of $S/J_G$. If $G$ is obtained by attaching whiskers at some vertices of the cycle of length $k$, then we show that $k-1leq reg(S/J_G)leq k+1$. Furthermore, we characterize $G$ with $reg(S/J_G)=k-1$, $reg(S/J_G)=k$ and $reg(S/J_G)=k+1$. In each of these cases, we classify the uniqueness of extremal Betti number of these graphs.
Let $G$ be a finite simple graph on $n$ vertices and $J_G$ denote the corresponding binomial edge ideal in the polynomial ring $S = K[x_1, ldots, x_n, y_1, ldots, y_n].$ In this article, we compute the Hilbert series of binomial edge ideal of decomposable graphs in terms of Hilbert series of its indecomposable subgraphs. Also, we compute the Hilbert series of binomial edge ideal of join of two graphs and as a consequence we obtain the Hilbert series of complete $k$-partite graph, fan graph, multi-fan graph and wheel graph.
Let $J_G$ be the binomial edge ideal of a graph $G$. We characterize all graphs whose binomial edge ideals, as well as their initial ideals, have regularity $3$. Consequently we characterize all graphs $G$ such that $J_G$ is extremal Gorenstein. Indeed, these characterizations are consequences of an explicit formula we obtain for the regularity of the binomial edge ideal of the join product of two graphs. Finally, by using our regularity formula, we discuss some open problems in the literature. In particular we disprove a conjecture in cite{CDI} on the regularity of weakly closed graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا