Do you want to publish a course? Click here

Points. Lack thereof

56   0   0.0 ( 0 )
 Added by Fedele Lizzi
 Publication date 2019
  fields Physics
and research's language is English
 Authors Fedele Lizzi




Ask ChatGPT about the research

I will discuss some aspects of the concept of point in quantum gravity, using mainly the tool of noncommutative geometry. I will argue that at Plancks distances the very concept of point may lose its meaning. I will then show how, using the spectral action and a high momenta expansion, the connections between points, as probed by boson propagators, vanish. This discussion follows closely [1] (Kurkov-Lizzi-Vassilevich Phys. Lett. B 731 (2014) 311, [arXiv:1312.2235 [hep-th]].



rate research

Read More

145 - S.Deser 2019
To celebrate Roman Jackiws 80th birthday, herewith some comments on gravity and gauge theory models in D=3, the chief focus of many of our joint efforts.
We investigate a new property of retarded Greens functions using AdS/CFT. The Greens functions are not unique at special points in complex momentum space. This arises because there is no unique incoming mode at the horizon and is similar to the pole-skipping phenomenon in holographic chaos. Our examples include the bulk scalar field, the bulk Maxwell vector and scalar modes, and the shear mode of gravitational perturbations. In these examples, the special points are always located at $omega_star = -i(2pi T)$ with appropriate values of complex wave number.
62 - F.R. Klinkhamer 2020
Assuming that the large-$N$ master field of the Lorentzian IIB matrix model has been obtained, we go through the procedure of how the coordinates of emerging spacetime points can be extracted. Explicit calculations with test master fields suggest that the genuine IIB-matrix-model master field may have a fine-structure that is essential for producing the spacetime points of an expanding universe.
159 - Cecilia Nardini 2007
We investigate different opinion formation models on adaptive network topologies. Depending on the dynamical process, rewiring can either (i) lead to the elimination of interactions between agents in different states, and accelerate the convergence to a consensus state or break the network in non-interacting groups or (ii) counter-intuitively, favor the existence of diverse interacting groups for exponentially long times. The mean-field analysis allows to elucidate the mechanisms at play. Strikingly, allowing the interacting agents to bear more than one opinion at the same time drastically changes the models behavior and leads to fast consensus.
194 - Ken Wharton 2012
When we want to predict the future, we compute it from what we know about the present. Specifically, we take a mathematical representation of observed reality, plug it into some dynamical equations, and then map the time-evolved result back to real-world predictions. But while this computational process can tell us what we want to know, we have taken this procedure too literally, implicitly assuming that the universe must compute itself in the same manner. Physical theories that do not follow this computational framework are deemed illogical, right from the start. But this anthropocentric assumption has steered our physical models into an impossible corner, primarily because of quantum phenomena. Meanwhile, we have not been exploring other models in which the universe is not so limited. In fact, some of these alternate models already have a well-established importance, but are thought to be mathematical tricks without physical significance. This essay argues that only by dropping our assumption that the universe is a computer can we fully develop such models, explain quantum phenomena, and understand the workings of our universe. (This essay was awarded third prize in the 2012 FQXi essay contest; a new afterword compares and contrasts this essay with Robert Spekkens first prize entry.)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا