Do you want to publish a course? Click here

CryptoNN: Training Neural Networks over Encrypted Data

87   0   0.0 ( 0 )
 Added by Runhua Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Emerging neural networks based machine learning techniques such as deep learning and its variants have shown tremendous potential in many application domains. However, they raise serious privacy concerns due to the risk of leakage of highly privacy-sensitive data when data collected from users is used to train neural network models to support predictive tasks. To tackle such serious privacy concerns, several privacy-preserving approaches have been proposed in the literature that use either secure multi-party computation (SMC) or homomorphic encryption (HE) as the underlying mechanisms. However, neither of these cryptographic approaches provides an efficient solution towards constructing a privacy-preserving machine learning model, as well as supporting both the training and inference phases. To tackle the above issue, we propose a CryptoNN framework that supports training a neural network model over encrypted data by using the emerging functional encryption scheme instead of SMC or HE. We also construct a functional encryption scheme for basic arithmetic computation to support the requirement of the proposed CryptoNN framework. We present performance evaluation and security analysis of the underlying crypto scheme and show through our experiments that CryptoNN achieves accuracy that is similar to those of the baseline neural network models on the MNIST dataset.



rate research

Read More

Remote monitoring to support aging in place is an active area of research. Advanced computer vision technology based on deep learning can provide near real-time home monitoring to detect falling and symptoms related to seizure, and stroke. Affordable webcams, together with cloud computing services (to run machine learning algorithms), can potentially bring significant social and health benefits. However, it has not been deployed in practice because of privacy and security concerns. People may feel uncomfortable sending their videos of daily activities (with potentially sensitive private information) to a computing service provider (e.g., on a commercial cloud). In this paper, we propose a novel strategy to resolve this dilemma by applying fully homomorphic encryption (FHE) to an alternative representation of human actions (i.e., skeleton joints), which guarantees information confidentiality while retaining high-performance action detection at a low cost. We design an FHE-friendly neural network for action recognition and present a secure neural network evaluation strategy to achieve near real-time action detection. Our framework for private inference achieves an 87.99% recognition accuracy (86.21% sensitivity and 99.14% specificity in detecting falls) with a latency of 3.1 seconds on real-world datasets. Our evaluation shows that our elaborated and fine-tuned method reduces the inference latency by 23.81%~74.67% over a straightforward implementation.
Encryption provides a method to protect data outsourced to a DBMS provider, e.g., in the cloud. However, performing database operations over encrypted data requires specialized encryption schemes that carefully balance security and performance. In this paper, we present a new encryption scheme that can efficiently perform equi-joins over encrypted data with better security than the state-of-the-art. In particular, our encryption scheme reduces the leakage to equality of rows that match a selection criterion and only reveals the transitive closure of the sum of the leakages of each query in a series of queries. Our encryption scheme is provable secure. We implemented our encryption scheme and evaluated it over a dataset from the TPC-H benchmark.
Several cybersecurity domains, such as ransomware detection, forensics and data analysis, require methods to reliably identify encrypted data fragments. Typically, current approaches employ statistics derived from byte-level distribution, such as entropy estimation, to identify encrypted fragments. However, modern content types use compression techniques which alter data distribution pushing it closer to the uniform distribution. The result is that current approaches exhibit unreliable encryption detection performance when compressed data appears in the dataset. Furthermore, proposed approaches are typically evaluated over few data types and fragment sizes, making it hard to assess their practical applicability. This paper compares existing statistical tests on a large, standardized dataset and shows that current approaches consistently fail to distinguish encrypted and compressed data on both small and large fragment sizes. We address these shortcomings and design EnCoD, a learning-based classifier which can reliably distinguish compressed and encrypted data. We evaluate EnCoD on a dataset of 16 different file types and fragment sizes ranging from 512B to 8KB. Our results highlight that EnCoD outperforms current approaches by a wide margin, with accuracy ranging from ~82 for 512B fragments up to ~92 for 8KB data fragments. Moreover, EnCoD can pinpoint the exact format of a given data fragment, rather than performing only binary classification like previous approaches.
Data protection algorithms are becoming increasingly important to support modern business needs for facilitating data sharing and data monetization. Anonymization is an important step before data sharing. Several organizations leverage on third parties for storing and managing data. However, third parties are often not trusted to store plaintext personal and sensitive data; data encryption is widely adopted to protect against intentional and unintentional attempts to read personal/sensitive data. Traditional encryption schemes do not support operations over the ciphertexts and thus anonymizing encrypted datasets is not feasible with current approaches. This paper explores the feasibility and depth of implementing a privacy-preserving data publishing workflow over encrypted datasets leveraging on homomorphic encryption. We demonstrate how we can achieve uniqueness discovery, data masking, differential privacy and k-anonymity over encrypted data requiring zero knowledge about the original values. We prove that the security protocols followed by our approach provide strong guarantees against inference attacks. Finally, we experimentally demonstrate the performance of our data publishing workflow components.
Balancing the needs of data privacy and predictive utility is a central challenge for machine learning in healthcare. In particular, privacy concerns have led to a dearth of public datasets, complicated the construction of multi-hospital cohorts and limited the utilization of external machine learning resources. To remedy this, new methods are required to enable data owners, such as hospitals, to share their datasets publicly, while preserving both patient privacy and modeling utility. We propose NeuraCrypt, a private encoding scheme based on random deep neural networks. NeuraCrypt encodes raw patient data using a randomly constructed neural network known only to the data-owner, and publishes both the encoded data and associated labels publicly. From a theoretical perspective, we demonstrate that sampling from a sufficiently rich family of encoding functions offers a well-defined and meaningful notion of privacy against a computationally unbounded adversary with full knowledge of the underlying data-distribution. We propose to approximate this family of encoding functions through random deep neural networks. Empirically, we demonstrate the robustness of our encoding to a suite of adversarial attacks and show that NeuraCrypt achieves competitive accuracy to non-private baselines on a variety of x-ray tasks. Moreover, we demonstrate that multiple hospitals, using independent private encoders, can collaborate to train improved x-ray models. Finally, we release a challenge dataset to encourage the development of new attacks on NeuraCrypt.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا