Do you want to publish a course? Click here

Secure k-Anonymization over Encrypted Databases

106   0   0.0 ( 0 )
 Added by Manish Kesarwani
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Data protection algorithms are becoming increasingly important to support modern business needs for facilitating data sharing and data monetization. Anonymization is an important step before data sharing. Several organizations leverage on third parties for storing and managing data. However, third parties are often not trusted to store plaintext personal and sensitive data; data encryption is widely adopted to protect against intentional and unintentional attempts to read personal/sensitive data. Traditional encryption schemes do not support operations over the ciphertexts and thus anonymizing encrypted datasets is not feasible with current approaches. This paper explores the feasibility and depth of implementing a privacy-preserving data publishing workflow over encrypted datasets leveraging on homomorphic encryption. We demonstrate how we can achieve uniqueness discovery, data masking, differential privacy and k-anonymity over encrypted data requiring zero knowledge about the original values. We prove that the security protocols followed by our approach provide strong guarantees against inference attacks. Finally, we experimentally demonstrate the performance of our data publishing workflow components.



rate research

Read More

Spatial queries like range queries, nearest neighbor, circular range queries etc. are the most widely used queries in the location-based applications. Building secure and efficient solutions for these queries in the cloud computing framework is critical and has been an area of active research. This paper focuses on the problem of Secure Circular Range Queries (SCRQ), where client submits an encrypted query (consisting of a center point and radius of the circle) and the cloud (storing encrypted data points) has to return the points lying inside the circle. The existing solutions for this problem suffer from various disadvantages such as high processing time which is proportional to square of the query radius, query generation phase which is directly proportional to the number of points covered by the query etc. This paper presents solution for the above problem which is much more efficient than the existing solutions. Three protocols are proposed with varying characteristics. It is shown that all the three protocols are secure. The proposed protocols can be extended to multiple dimensions and thus are able to handle Secure Hypersphere Range Queries (SHRQ) as well. Internally the proposed protocols use pairing-based cryptography and a concept of lookup table. To enable the efficient use of limited size lookup table, a new storage scheme is presented. The proposed storage scheme enables the protocols to handle query with much larger radius values. Using the SHRQ protocols, we also propose a mechanism to answer the Secure range Queries. Extensive performance evaluation has been done to evaluate the efficiency of the proposed protocols
75 - Yanjun Pan , Alon Efrat , Ming Li 2020
Due to increasing concerns of data privacy, databases are being encrypted before they are stored on an untrusted server. To enable search operations on the encrypted data, searchable encryption techniques have been proposed. Representative schemes use order-preserving encryption (OPE) for supporting efficient Boolean queries on encrypted databases. Yet, recent works showed the possibility of inferring plaintext data from OPE-encrypted databases, merely using the order-preserving constraints, or combined with an auxiliary plaintext dataset with similar frequency distribution. So far, the effectiveness of such attacks is limited to single-dimensional dense data (most values from the domain are encrypted), but it remains challenging to achieve it on high-dimensional datasets (e.g., spatial data) which are often sparse in nature. In this paper, for the first time, we study data inference attacks on multi-dimensional encrypted databases (with 2-D as a special case). We formulate it as a 2-D order-preserving matching problem and explore both unweighted and weighted cases, where the former maximizes the number of points matched using only order information and the latter further considers points with similar frequencies. We prove that the problem is NP-hard, and then propose a greedy algorithm, along with a polynomial-time algorithm with approximation guarantees. Experimental results on synthetic and real-world datasets show that the data recovery rate is significantly enhanced compared with the previous 1-D matching algorithm.
Emerging neural networks based machine learning techniques such as deep learning and its variants have shown tremendous potential in many application domains. However, they raise serious privacy concerns due to the risk of leakage of highly privacy-sensitive data when data collected from users is used to train neural network models to support predictive tasks. To tackle such serious privacy concerns, several privacy-preserving approaches have been proposed in the literature that use either secure multi-party computation (SMC) or homomorphic encryption (HE) as the underlying mechanisms. However, neither of these cryptographic approaches provides an efficient solution towards constructing a privacy-preserving machine learning model, as well as supporting both the training and inference phases. To tackle the above issue, we propose a CryptoNN framework that supports training a neural network model over encrypted data by using the emerging functional encryption scheme instead of SMC or HE. We also construct a functional encryption scheme for basic arithmetic computation to support the requirement of the proposed CryptoNN framework. We present performance evaluation and security analysis of the underlying crypto scheme and show through our experiments that CryptoNN achieves accuracy that is similar to those of the baseline neural network models on the MNIST dataset.
Reversible data hiding in encrypted images (RDH-EI) has attracted increasing attention, since it can protect the privacy of original images while the embedded data can be exactly extracted. Recently, some RDH-EI schemes with multiple data hiders have been proposed using secret sharing technique. However, these schemes protect the contents of the original images with lightweight security level. In this paper, we propose a high-security RDH-EI scheme with multiple data hiders. First, we introduce a cipher-feedback secret sharing (CFSS) technique. It follows the cryptography standards by introducing the cipher-feedback strategy of AES. Then, using the CFSS technique, we devise a new (r,n)-threshold (r<=n) RDH-EI scheme with multiple data hiders called CFSS-RDHEI. It can encrypt an original image into n encrypted images with reduced size using an encryption key and sends each encrypted image to one data hider. Each data hider can independently embed secret data into the encrypted image to obtain the corresponding marked encrypted image. The original image can be completely recovered from r marked encrypted images and the encryption key. Performance evaluations show that our CFSS-RDHEI scheme has high embedding rate and its generated encrypted images are much smaller, compared to existing secret sharing-based RDH-EI schemes. Security analysis demonstrates that it can achieve high security to defense some commonly used security attacks.
Encryption provides a method to protect data outsourced to a DBMS provider, e.g., in the cloud. However, performing database operations over encrypted data requires specialized encryption schemes that carefully balance security and performance. In this paper, we present a new encryption scheme that can efficiently perform equi-joins over encrypted data with better security than the state-of-the-art. In particular, our encryption scheme reduces the leakage to equality of rows that match a selection criterion and only reveals the transitive closure of the sum of the leakages of each query in a series of queries. Our encryption scheme is provable secure. We implemented our encryption scheme and evaluated it over a dataset from the TPC-H benchmark.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا