Do you want to publish a course? Click here

Molecular Polar Belief Propagation Decoder and Successive Cancellation Decoder

104   0   0.0 ( 0 )
 Added by Chuan Zhang
 Publication date 2019
and research's language is English
 Authors Zhiwei Zhong




Ask ChatGPT about the research

By constructing chemical reaction networks (CRNs), this paper proposes a method of synthesizing polar decoder using belief propagation (BP) algorithm and successive cancellation (SC) algorithm, respectively. Theoretical analysis and simulation results have validated the feasibility of the method. Reactions in the proposed design could be experimentally implemented with DNA strand displacement reactions, making the proposed polar decoders promising for wide application in nanoscale devices.



rate research

Read More

Polar codes, discovered by Ar{i}kan, are the first error-correcting codes with an explicit construction to provably achieve channel capacity, asymptotically. However, their error-correction performance at finite lengths tends to be lower than existing capacity-approaching schemes. Using the successive-cancellation algorithm, polar decoders can be designed for very long codes, with low hardware complexity, leveraging the regular structure of such codes. We present an architecture and an implementation of a scalable hardware decoder based on this algorithm. This design is shown to scale to code lengths of up to N = 2^20 on an Altera Stratix IV FPGA, limited almost exclusively by the amount of available SRAM.
111 - Tiben Che , Jingwei Xu , Gwan Choi 2015
This paper presents a hardware architecture of fast simplified successive cancellation (fast-SSC) algorithm for polar codes, which significantly reduces the decoding latency and dramatically increases the throughput. Algorithmically, fast-SSC algorithm suffers from the fact that its decoder scheduling and the consequent architecture depends on the code rate; this is a challenge for rate-compatible system. However, by exploiting the homogeneousness between the decoding processes of fast constituent polar codes and regular polar codes, the presented design is compatible with any rate. The scheduling plan and the intendedly designed process core are also described. Results show that, compared with the state-of-art decoder, proposed design can achieve at least 60% latency reduction for the codes with length N = 1024. By using Nangate FreePDK 45nm process, proposed design can reach throughput up to 5.81 Gbps and 2.01 Gbps for (1024, 870) and (1024, 512) polar code, respectively.
This paper presents an efficient hardware design approach for list successive cancellation (LSC) decoding of polar codes. By applying path-overlapping scheme, the l instances of (l > 1) successive cancellation (SC) decoder for LSC with list size l can be cut down to only one. This results in a dramatic reduction of the hardware complexity without any decoding performance loss. We also develop novel approaches to reduce the latencyassociated with the pipeline scheme. Simulation results show that with proposed design approach the hardware efficiency is increased significantly over the recently proposed LSC decoders.
59 - Huayi Zhou 2018
As the first error correction codes provably achieving the symmetric capacity of binary-input discrete memory-less channels (B-DMCs), polar codes have been recently chosen by 3GPP for eMBB control channel. Among existing algorithms, CRC-aided successive cancellation list (CA-SCL) decoding is favorable due to its good performance, where CRC is placed at the end of the decoding and helps to eliminate the invalid candidates before final selection. However, the good performance is obtained with a complexity increase that is linear in list size $L$. In this paper, the tailored CRC-aided SCL (TCA-SCL) decoding is proposed to balance performance and complexity. Analysis on how to choose the proper CRC for a given segment is proposed with the help of emph{virtual transform} and emph{virtual length}. For further performance improvement, hybrid automatic repeat request (HARQ) scheme is incorporated. Numerical results have shown that, with the similar complexity as the state-of-the-art, the proposed TCA-SCL and HARQ-TCA-SCL schemes achieve $0.1$ dB and $0.25$ dB performance gain at frame error rate $textrm{FER}=10^{-2}$, respectively. Finally, an efficient TCA-SCL decoder is implemented with FPGA demonstrating its advantages over CA-SCL decoder.
Present-day communication systems routinely use codes that approach the channel capacity when coupled with a computationally efficient decoder. However, the decoder is typically designed for the Gaussian noise channel and is known to be sub-optimal for non-Gaussian noise distribution. Deep learning methods offer a new approach for designing decoders that can be trained and tailored for arbitrary channel statistics. We focus on Turbo codes and propose DeepTurbo, a novel deep learning based architecture for Turbo decoding. The standard Turbo decoder (Turbo) iteratively applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm with an interleaver in the middle. A neural architecture for Turbo decoding termed (NeuralBCJR), was proposed recently. There, the key idea is to create a module that imitates the BCJR algorithm using supervised learning, and to use the interleaver architecture along with this module, which is then fine-tuned using end-to-end training. However, knowledge of the BCJR algorithm is required to design such an architecture, which also constrains the resulting learned decoder. Here we remedy this requirement and propose a fully end-to-end trained neural decoder - Deep Turbo Decoder (DeepTurbo). With novel learnable decoder structure and training methodology, DeepTurbo reveals superior performance under both AWGN and non-AWGN settings as compared to the other two decoders - Turbo and NeuralBCJR. Furthermore, among all the three, DeepTurbo exhibits the lowest error floor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا