No Arabic abstract
As the first error correction codes provably achieving the symmetric capacity of binary-input discrete memory-less channels (B-DMCs), polar codes have been recently chosen by 3GPP for eMBB control channel. Among existing algorithms, CRC-aided successive cancellation list (CA-SCL) decoding is favorable due to its good performance, where CRC is placed at the end of the decoding and helps to eliminate the invalid candidates before final selection. However, the good performance is obtained with a complexity increase that is linear in list size $L$. In this paper, the tailored CRC-aided SCL (TCA-SCL) decoding is proposed to balance performance and complexity. Analysis on how to choose the proper CRC for a given segment is proposed with the help of emph{virtual transform} and emph{virtual length}. For further performance improvement, hybrid automatic repeat request (HARQ) scheme is incorporated. Numerical results have shown that, with the similar complexity as the state-of-the-art, the proposed TCA-SCL and HARQ-TCA-SCL schemes achieve $0.1$ dB and $0.25$ dB performance gain at frame error rate $textrm{FER}=10^{-2}$, respectively. Finally, an efficient TCA-SCL decoder is implemented with FPGA demonstrating its advantages over CA-SCL decoder.
Turbo codes and CRC codes are usually decoded separately according to the serially concatenated inner codes and outer codes respectively. In this letter, we propose a hybrid decoding algorithm of turbo-CRC codes, where the outer codes, CRC codes, are not used for error detection but as an assistance to improve the error correction performance. Two independent iterative decoding and reliability based decoding are carried out in a hybrid schedule, which can efficiently decode the two different codes as an entire codeword. By introducing an efficient error detecting method based on normalized Euclidean distance without CRC check, significant gain can be obtained by using the hybrid decoding method without loss of the error detection ability.
Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with a complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in significant error-correction performance loss. We then introduce a training parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding, with almost no error-correction performance degradation.
This work identifies information-theoretic quantities that are closely related to the required list size for successive cancellation list (SCL) decoding to implement maximum-likelihood decoding. It also provides an approximation for these quantities that can be computed efficiently for very long codes. There is a concentration around the mean of the logarithm of the required list size for sufficiently large block lengths. We further provide a simple method to estimate the mean via density evolution for the binary erasure channel (BEC). Simulation results for the binary-input additive white Gaussian noise channel as well as the BEC demonstrate the accuracy of the mean estimate. A modified Reed-Muller code with dynamic frozen bits performs very close to the random coding union (RCU) bound down to the block error rate of $10^{-5}$ under SCL decoding with list size $L=128$ when the block length is $N=128$. The analysis shows how to modify the design to improve the performance when a more practical list size, e.g., $L=32$, is adopted while keeping the performance with $L=128$ unchanged. For the block length of $N=512$, a design performing within $0.4$ dB from the RCU bound down to the block error rate of $10^{-6}$ under an SCL decoder with list size $L=1024$ is provided. The design is modified using the new guidelines so that the performance improves with practical list sizes, e.g., $Lin{8,32,128}$, outperforming 5G designs.
Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-correction performance at moderate code length. In order to improve the error-correction performance of SC, two approaches are available: (i) SC-List decoding which keeps a list of candidates by running a number of SC decoders in parallel, thus increasing the implementation complexity, and (ii) SC-Flip decoding that relies on a single SC module, and keeps the computational complexity close to SC. In this work, we propose the partitioned SC-Flip (PSCF) decoding algorithm, which outperforms SC-Flip in terms of error-correction performance and average computational complexity, leading to higher throughput and reduced energy consumption per codeword. We also introduce a partitioning scheme that best suits our PSCF decoder. Simulation results show that at equivalent frame error rate, PSCF has up to $5 times$ less computational complexity than the SC-Flip decoder. At equivalent average number of iterations, the error-correction performance of PSCF outperforms SC-Flip by up to $0.15$ dB at frame error rate of $10^{-3}$.
A deep-learning-aided successive-cancellation list (DL-SCL) decoding algorithm for polar codes is introduced with deep-learning-aided successive-cancellation (DL-SC) decoding being a specific case of it. The DL-SCL decoder works by allowing additional rounds of SCL decoding when the first SCL decoding attempt fails, using a novel bit-flipping metric. The proposed bit-flipping metric exploits the inherent relations between the information bits in polar codes that are represented by a correlation matrix. The correlation matrix is then optimized using emerging deep-learning techniques. Performance results on a polar code of length 128 with 64 information bits concatenated with a 24-bit cyclic redundancy check show that the proposed bit-flipping metric in the proposed DL-SCL decoder requires up to 66% fewer multiplications and up to 36% fewer additions, without any need to perform transcendental functions, and by providing almost the same error-correction performance in comparison with the state of the art.